Displaying 561 – 580 of 842

Showing per page

Quantitative stability for sumsets in n

Alessio Figalli, David Jerison (2015)

Journal of the European Mathematical Society

Given a measurable set A n of positive measure, it is not difficult to show that | A + A | = | 2 A | if and only if A is equal to its convex hull minus a set of measure zero. We investigate the stability of this statement: If ( | A + A | - | 2 A | ) / | A | is small, is A close to its convex hull? Our main result is an explicit control, in arbitrary dimension, on the measure of the difference between A and its convex hull in terms of ( | A + A | - | 2 A | ) / | A | .

Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach

Filippo Cagnetti, Rodica Toader (2011)

ESAIM: Control, Optimisation and Calculus of Variations

A new approach to irreversible quasistatic fracture growth is given, by means of Young measures. The study concerns a cohesive zone model with prescribed crack path, when the material gives different responses to loading and unloading phases. In the particular situation of constant unloading response, the result contained in [G. Dal Maso and C. Zanini, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007) 253–279] is recovered. In this case, the convergence of the discrete time approximations is improved....

Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach

Filippo Cagnetti, Rodica Toader (2011)

ESAIM: Control, Optimisation and Calculus of Variations

A new approach to irreversible quasistatic fracture growth is given, by means of Young measures. The study concerns a cohesive zone model with prescribed crack path, when the material gives different responses to loading and unloading phases. In the particular situation of constant unloading response, the result contained in [G. Dal Maso and C. Zanini, Proc. Roy. Soc. Edinburgh Sect. A137 (2007) 253–279] is recovered. In this case, the convergence of the discrete time approximations is improved. ...

Rectifiability and perimeter in step 2 Groups

Bruno Franchi, Raul Serapioni, Francesco Serra Cassano (2002)

Mathematica Bohemica

We study finite perimeter sets in step 2 Carnot groups. In this way we extend the classical De Giorgi’s theory, developed in Euclidean spaces by De Giorgi, as well as its generalization, considered by the authors, in Heisenberg groups. A structure theorem for sets of finite perimeter and consequently a divergence theorem are obtained. Full proofs of these results, comments and an exhaustive bibliography can be found in our preprint (2001).

Regular mappings between dimensions

Guy David, Stephen Semmes (2000)

Publicacions Matemàtiques

The notions of Lipschitz and bilipschitz mappings provide classes of mappings connected to the geometry of metric spaces in certain ways. A notion between these two is given by regular mappings (reviewed in Section 1), in which some non-bilipschitz behavior is allowed, but with limitations on this, and in a quantitative way. In this paper we look at a class of mappings called (s, t)-regular mappings. These mappings are the same as ordinary regular mappings when s = t, but otherwise they behave somewhat...

Régularité Lipschitzienne des Géodésiques Minimisantes pour Quelques Distributions Affines

Bensalem, Naceurdine (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 49J15, 49J30, 53B50.In the context of sub-Riemannian geometry and the Lipschitzian regularity of minimizers in control theory, we investigate some properties of minimizing geodesics for certain affine distributions. In particular, we consider the case of a generalized H2-strong affine distribution and the case of an affine Plaff system of maximal class.

Regularity of optimal shapes for the Dirichlet’s energy with volume constraint

Tanguy Briancon (2004)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we prove some regularity results for the boundary of an open subset of d which minimizes the Dirichlet’s energy among all open subsets with prescribed volume. In particular we show that, when the volume constraint is “saturated”, the reduced boundary of the optimal shape (and even the whole boundary in dimension 2) is regular if the state function is nonnegative.

Regularity of optimal shapes for the Dirichlet's energy with volume constraint

Tanguy Briancon (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we prove some regularity results for the boundary of an open subset of d which minimizes the Dirichlet's energy among all open subsets with prescribed volume. In particular we show that, when the volume constraint is “saturated”, the reduced boundary of the optimal shape (and even the whole boundary in dimension 2) is regular if the state function is nonnegative.

Currently displaying 561 – 580 of 842