Convergence and rigidity of manifolds under Ricci curvature bounds.
Michael T. Anderson (1990)
Inventiones mathematicae
B. Colbois, G. Courtois (1991)
Annales scientifiques de l'École Normale Supérieure
Francesca Da Lio, N. Forcadel, Régis Monneau (2008)
Journal of the European Mathematical Society
We prove the convergence at a large scale of a non-local first order equation to an anisotropic mean curvature motion. The equation is an eikonal-type equation with a velocity depending in a non-local way on the solution itself, which arises in the theory of dislocation dynamics. We show that if an anisotropic mean curvature motion is approximated by equations of this type then it is always of variational type, whereas the converse is true only in dimension two.
Rešić, S., Antonevich, A.B., Dolićanin, Ć. (2007)
Novi Sad Journal of Mathematics
Jian Song, Steve Zelditch (2007)
Annales de l’institut Fourier
The space of Kähler metrics in a fixed Kähler class on a projective Kähler manifold is an infinite dimensional symmetric space whose geodesics are solutions of a homogeneous complex Monge-Ampère equation in , where is an annulus. Phong-Sturm have proven that the Monge-Ampère geodesic of Kähler potentials of may be approximated in a weak sense by geodesics of the finite dimensional symmetric space of Bergman metrics of height . In this article we prove that in in the case of...
Stefan Peters (1987)
Compositio Mathematica
Atsushi Kasue (2002)
Annales de l’institut Fourier
We study the spectral convergence of compact Riemannian manifolds in relation with the Gromov-Hausdorff distance and discuss the geodesic distances and the energy forms of the limit spaces.
Deane Yang (1992)
Annales scientifiques de l'École Normale Supérieure
Deane Yang (1992)
Annales scientifiques de l'École Normale Supérieure
Shigeru Kodani (1990)
Compositio Mathematica
L. Saloff-Coste (1994)
Colloquium Mathematicae
Casadio Tarabusi, Enrico, Cohen, Joel M., Korányi, Adam, Picardello, Massimo A. (1998)
Journal of Lie Theory
Jürgen Jost (1995)
Commentarii mathematici Helvetici
R. E. Greene, K. Shiohama (1981)
Annales scientifiques de l'École Normale Supérieure
K. Shiohama, R.E. Greene (1981)
Inventiones mathematicae
Frederico Xavier (1984)
Mathematische Annalen
Nicolaas H. Kuiper (1961)
Commentarii mathematici Helvetici
Elkholy, E.M. (2000)
International Journal of Mathematics and Mathematical Sciences
G.R. Burton (1977)
Monatshefte für Mathematik
Yves Benoist (2003)
Publications Mathématiques de l'IHÉS
Every bounded convex open set Ω of Rm is endowed with its Hilbert metric dΩ. We give a necessary and sufficient condition, called quasisymmetric convexity, for this metric space to be hyperbolic. As a corollary, when the boundary is real analytic, Ω is always hyperbolic. In dimension 2, this condition is: in affine coordinates, the boundary ∂Ω is locally the graph of a C1 strictly convex function whose derivative is quasisymmetric.