Position vectors of curves in the galilean space G
In the four-dimensional pseudo-Euclidean space with neutral metric there are three types of rotational surfaces with two-dimensional axis - rotational surfaces of elliptic, hyperbolic or parabolic type. A surface whose mean curvature vector field is lightlike is said to be quasi-minimal. In this paper we classify all rotational quasi-minimal surfaces of elliptic, hyperbolic and parabolic type, respectively.
We study rotation surfaces in the three-dimensional pseudo-Galilean space G₃¹ such that the Gauss map G satisfies the condition L₁G = f(G + C) for a smooth function f and a constant vector C, where L₁ is the Cheng-Yau operator.
In this paper, we study a spacelike (timelike) ruled W-surface in Minkowski 3-space which satisfies nontrivial relation between elements of the set , where and are the Gaussian and mean curvatures of the first and second fundamental forms, respectively. Finally, some examples are constructed and plotted.
We give necessary and sufficient local conditions for the simultaneous unitarizability of a set of analytic matrix maps from an analytic 1-manifold into under conjugation by a single analytic matrix map.We apply this result to the monodromy arising from an integrable partial differential equation to construct a family of -noids, genus-zero constant mean curvature surfaces with three or more ends in euclidean, spherical and hyperbolic -spaces.
In this paper, geometric properties of spacelike curves on a timelike surface in Lorentz-Minkowski 3-space are investigated by applying the singularity theory of smooth functions from the contact viewpoint.
In this paper, we compute the Frenet vectors and the curvatures of the spacelike intersection curve of three spacelike hypersurfaces given by their parametric equations in four-dimensional Minkowski space E41.
Nous passons en revue certains résultats récents sur l’existence et l’unicité des sphères à courbure moyenne constante dans les variétés riemanniennes homogènes simplement connexes de dimension et leurs liens avec le problème isopérimétrique dans ces variétés.
The Grunsky and Teichmüller norms ϰ(f) and k(f) of a holomorphic univalent function f in a finitely connected domain D ∋ ∞ with quasiconformal extension to are related by ϰ(f) ≤ k(f). In 1985, Jürgen Moser conjectured that any univalent function in the disk Δ* = z: |z| > 1 can be approximated locally uniformly by functions with ϰ(f) < k(f). This conjecture has been recently proved by R. Kühnau and the author. In this paper, we prove that approximation is possible in a stronger sense, namely,...