Displaying 61 – 80 of 130

Showing per page

Quasi-minimal rotational surfaces in pseudo-Euclidean four-dimensional space

Georgi Ganchev, Velichka Milousheva (2014)

Open Mathematics

In the four-dimensional pseudo-Euclidean space with neutral metric there are three types of rotational surfaces with two-dimensional axis - rotational surfaces of elliptic, hyperbolic or parabolic type. A surface whose mean curvature vector field is lightlike is said to be quasi-minimal. In this paper we classify all rotational quasi-minimal surfaces of elliptic, hyperbolic and parabolic type, respectively.

Ruled W-surfaces in Minkowski 3-space 1 3

Rashad A. Abdel-Baky, H. N. Abd-Ellah (2008)

Archivum Mathematicum

In this paper, we study a spacelike (timelike) ruled W-surface in Minkowski 3-space which satisfies nontrivial relation between elements of the set { K , K I I , H , H I I } , where ( K , H ) and ( K I I , H I I ) are the Gaussian and mean curvatures of the first and second fundamental forms, respectively. Finally, some examples are constructed and plotted.

Simultaneous unitarizability of SL n -valued maps, and constant mean curvature k-noid monodromy

Wayne Rossman, Nicholas Schmitt (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We give necessary and sufficient local conditions for the simultaneous unitarizability of a set of analytic matrix maps from an analytic 1-manifold into SL n under conjugation by a single analytic matrix map.We apply this result to the monodromy arising from an integrable partial differential equation to construct a family of k -noids, genus-zero constant mean curvature surfaces with three or more ends in euclidean, spherical and hyperbolic 3 -spaces.

Strengthened Moser’s conjecture, geometry of Grunsky coefficients and Fredholm eigenvalues

Samuel Krushkal (2007)

Open Mathematics

The Grunsky and Teichmüller norms ϰ(f) and k(f) of a holomorphic univalent function f in a finitely connected domain D ∋ ∞ with quasiconformal extension to ^ are related by ϰ(f) ≤ k(f). In 1985, Jürgen Moser conjectured that any univalent function in the disk Δ* = z: |z| > 1 can be approximated locally uniformly by functions with ϰ(f) < k(f). This conjecture has been recently proved by R. Kühnau and the author. In this paper, we prove that approximation is possible in a stronger sense, namely,...

Currently displaying 61 – 80 of 130