Displaying 21 – 40 of 116

Showing per page

Curvatures of the diagonal lift from an affine manifold to the linear frame bundle

Oldřich Kowalski, Masami Sekizawa (2012)

Open Mathematics

We investigate the curvature of the so-called diagonal lift from an affine manifold to the linear frame bundle LM. This is an affine analogue (but not a direct generalization) of the Sasaki-Mok metric on LM investigated by L.A. Cordero and M. de León in 1986. The Sasaki-Mok metric is constructed over a Riemannian manifold as base manifold. We receive analogous and, surprisingly, even stronger results in our affine setting.

Distinguished connections on ( J 2 = ± 1 ) -metric manifolds

Fernando Etayo, Rafael Santamaría (2016)

Archivum Mathematicum

We study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of ( J 2 = ± 1 ) -metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among connections. We prove that the first canonical and the well adapted connections define a one-parameter family of adapted...

Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics

Alexandru Oană, Mircea Neagu (2012)

Communications in Mathematics

In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.

Do Barbero-Immirzi connections exist in different dimensions and signatures?

L. Fatibene, Mauro Francaviglia, S. Garruto (2012)

Communications in Mathematics

We shall show that no reductive splitting of the spin group exists in dimension 3 m 20 other than in dimension m = 4 . In dimension 4 there are reductive splittings in any signature. Euclidean and Lorentzian signatures are reviewed in particular and signature ( 2 , 2 ) is investigated explicitly in detail. Reductive splittings allow to define a global SU ( 2 ) -connection over spacetime which encodes in an weird way the holonomy of the standard spin connection. The standard Barbero-Immirzi (BI) connection used in LQG is...

Ellipticity of the symplectic twistor complex

Svatopluk Krýsl (2011)

Archivum Mathematicum

For a Fedosov manifold (symplectic manifold equipped with a symplectic torsion-free affine connection) admitting a metaplectic structure, we shall investigate two sequences of first order differential operators acting on sections of certain infinite rank vector bundles defined over this manifold. The differential operators are symplectic analogues of the twistor operators known from Riemannian or Lorentzian spin geometry. It is known that the mentioned sequences form complexes if the symplectic...

Currently displaying 21 – 40 of 116