Mainfolds with small excess and bounded curvature.
In this paper we consider compact, Riemannian manifolds M1, M2 each equipped with a oneparameter family of metrics g1(t), g2(t) satisfying the Ricci flow equation. Adopting the characterization of super-solutions to the Ricci flow developed by McCann-Topping, we define a super Ricci flow for a family of distance metrics defined on the disjoint union M1 ⊔ M2. In particular, we show such a super Ricci flow property holds provided the distance function between points in M1 and M2 is itself a super...
We summarize here the main ideas and results of our papers [28], [14], as presented at the 2013 CIRM Meeting on Discrete curvature and we augment these by bringing up an application of one of our main results, namely to solving a problem regarding cube complexes.
On établit une minoration pour la première valeur propre non nulle du problème de Neumann sur les variétés riemanniennes à bord; la nécessité des bornes géométriques utilisées est illustrée par une série d’exemples. Cette approche prolonge celle de Li-Yau, qui était limitée à l’étude du cas où le bord est convexe.