Über den ersten Eigenwert des Laplace-Operators auf Flächen vom Geschlecht zwei.
Nous montrons qu’une variété riemannienne de dimension , à courbure de Ricci et à courbure sectionnelle majorée, est une sphère dès que la première valeur propre de son laplacien (resp. son diamètre) est suffisamment proche de (resp. de ).
On démontre que si le rayon d’injectivité d’une variété riemannienne compacte est égal à , alors le volume de cette variété est supérieur ou égal à celui de la sphère de même dimension et de courbure sectionnelle constante et égale à . L’égalité ne peut se produire que pour cette sphère précise.
In this paper we investigate the growth of finitely generated groups. We recall the definition of the algebraic entropy of a group and show that if the group is acting as a discrete subgroup of the isometry group of a Cartan–Hadamard manifold with pinched negative curvature then a Tits alternative is true. More precisely the group is either virtually nilpotent or has a uniform growth bounded below by an explicit constant.
We establish in this paper a lower bound for the volume of a unit vector field defined on , . This lower bound is related to the sum of the absolute values of the indices of at and .