Nächste Punkte in der Riemannschen Geometrie.
Page 1
Norbert Kleinjohann (1981)
Mathematische Zeitschrift
José Araujo, Guillermo Keilhauer (2000)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
F. Tricerri, L. Vanhecke (1984)
Compositio Mathematica
Harold Donnelly (1990)
Mathematische Zeitschrift
Jacek Komorowski (1979)
Zapiski naucnych seminarov POMI
J.-H. Eschenburg (1982)
Inventiones mathematicae
L. Vanhecke, J.C. González-Dávila (1998)
Monatshefte für Mathematik
Paul Schmutz (1996)
Journal für die reine und angewandte Mathematik
Harold Donnelly, Charles Fefferman (1988)
Inventiones mathematicae
Shing-Tung Yau (1974)
Mathematische Annalen
Oldřich Kowalski (1993)
Commentationes Mathematicae Universitatis Carolinae
We extend a construction by K. Yamato [Ya] to obtain new explicit examples of Riemannian 3-manifolds as in the title. Some of these examples have an interesting geometrical interpretation.
Gudlaugur Thorbergsson (1979)
Mathematica Scandinavica
Karsten Grove, Luigi Verdiani, Burkhard Wilking, Wolfgang Ziller (2006)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
In contrast to the homogeneous case, we show that there are compact cohomogeneity one manifolds that do not support invariant metrics of non-negative sectional curvature. In fact we exhibit infinite families of such manifolds including the exotic Kervaire spheres. Such examples exist for any codimension of the singular orbits except for the case when both are equal to two, where existence of non-negatively curved metrics is known.
Matthias Kalus (2019)
Archivum Mathematicum
Non-split almost complex supermanifolds and non-split Riemannian supermanifolds are studied. The first obstacle for a splitting is parametrized by group orbits on an infinite dimensional vector space. For almost complex structures, the existence of a splitting is equivalent to the existence of local coordinates in which the almost complex structure can be represented by a purely numerical matrix, i.e. containing no Grassmann variables. For Riemannian metrics, terms up to degree 2 are allowed in...
J.-M. Coron (1990)
Annales de l'I.H.P. Analyse non linéaire
Yongzhong Xu (2006)
Annales de l'I.H.P. Analyse non linéaire
Page 1