Valeurs propres immergées dans le spectre continu d'une surface de Riemann
Page 1
Y. Colin de Verdière (1982/1983)
Séminaire Équations aux dérivées partielles (Polytechnique)
Ernst A. Ruh, Min-Oo (1981)
Mathematische Annalen
Hirohiko Shima (1986)
Annales de l'institut Fourier
A manifold is said to be Hessian if it admits a flat affine connection and a Riemannian metric such that where is a local function. We study cohomology for Hessian manifolds, and prove a duality theorem and vanishing theorems.
Alexander Nabutovsky, Shmuel Weinberger (2000)
Publications Mathématiques de l'IHÉS
Paul Gauduchon (1992/1993)
Séminaire Bourbaki
Pierre Bérard (1988/1989)
Séminaire Bourbaki
Alois Švec (1987)
Czechoslovak Mathematical Journal
A. Bahri, J. M. Coron (1984/1985)
Séminaire Équations aux dérivées partielles (Polytechnique)
Gudlaugur Thorbergsson (1976)
Mathematische Zeitschrift
Michael Gromov (1982)
Publications Mathématiques de l'IHÉS
Jing Mao (2016)
Czechoslovak Mathematical Journal
In this paper, for complete Riemannian manifolds with radial Ricci or sectional curvature bounded from below or above, respectively, with respect to some point, we prove several volume comparison theorems, which can be seen as extensions of already existing results. In fact, under this radial curvature assumption, the model space is the spherically symmetric manifold, which is also called the generalized space form, determined by the bound of the radial curvature, and moreover, volume comparisons...
Constantin Vernicos (1999/2000)
Séminaire de théorie spectrale et géométrie
Ezin, Jean-Pierre, Ogouyandjou, Carlos (2005)
International Journal of Mathematics and Mathematical Sciences
Sylvestre Gallot (1988/1989)
Séminaire de théorie spectrale et géométrie
Sylvestre Gallot (1997/1998)
Séminaire Bourbaki
Page 1