Harmonic mappings of Kähler manifolds to locally symmetric spaces
We study representations of lattices of into . We show that if a representation is reductive and if is at least 2, then there exists a finite energy harmonic equivariant map from complex hyperbolic -space to complex hyperbolic -space. This allows us to give a differential geometric proof of rigidity results obtained by M. Burger and A. Iozzi. We also define a new invariant associated to representations into of non-uniform lattices in , and more generally of fundamental groups of orientable...
Let (M = G/H;g)denote a four-dimensional pseudo-Riemannian generalized symmetric space and g = m + h the corresponding decomposition of the Lie algebra g of G. We completely determine the harmonicity properties of vector fields belonging to m. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. Vector fields defining harmonic maps are also classified, and the energy of these vector fields is explicitly calculated.
In an earlier paper, the first two authors have shown that the convolution of a function continuous on the closure of a Cartan domain and a -invariant finite measure on that domain is again continuous on the closure, and, moreover, its restriction to any boundary face depends only on the restriction of to and is equal to the convolution, in , of the latter restriction with some measure on uniquely determined by . In this article, we give an explicit formula for in terms of ,...
We characterize the boundary at infinity of a complex hyperbolic space as a compact Ptolemy space that satisfies four incidence axioms.