Displaying 21 – 40 of 97

Showing per page

Convexity estimates for flows by powers of the mean curvature

Felix Schulze (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We study the evolution of a closed, convex hypersurface in n + 1 in direction of its normal vector, where the speed equals a power k 1 of the mean curvature. We show that if initially the ratio of the biggest and smallest principal curvatures at every point is close enough to 1 , depending only on k and n , then this is maintained under the flow. As a consequence we obtain that, when rescaling appropriately as the flow contracts to a point, the evolving surfaces converge to the unit sphere.

Curvature flows on surfaces

Michael Struwe (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Prompted by recent work of Xiuxiong Chen, a unified approach to the Hamilton-Ricci and Calabi flows on a closed, compact surface is presented, recovering global existence and exponentially fast asymptotic convergence from concentration-compactness results for conformal metrics.

Deforming metrics of foliations

Vladimir Rovenski, Robert Wolak (2013)

Open Mathematics

Let M be a Riemannian manifold equipped with two complementary orthogonal distributions D and D ⊥. We introduce the conformal flow of the metric restricted to D with the speed proportional to the divergence of the mean curvature vector H, and study the question: When the metrics converge to one for which D enjoys a given geometric property, e.g., is harmonic, or totally geodesic? Our main observation is that this flow is equivalent to the heat flow of the 1-form dual to H, provided the initial 1-form...

Diffuse-interface treatment of the anisotropic mean-curvature flow

Michal Beneš (2003)

Applications of Mathematics

We investigate the motion by mean curvature in relative geometry by means of the modified Allen-Cahn equation, where the anisotropy is incorporated. We obtain the existence result for the solution as well as a result concerning the asymptotical behaviour with respect to the thickness parameter. By means of a numerical scheme, we can approximate the original law, as shown in several computational examples.

Direct approach to mean-curvature flow with topological changes

Petr Pauš, Michal Beneš (2009)

Kybernetika

This contribution deals with the numerical simulation of dislocation dynamics. Dislocations are described by means of the evolution of a family of closed or open smooth curves Γ ( t ) : S 2 , t 0 . The curves are driven by the normal velocity v which is the function of curvature κ and the position. The evolution law reads as: v = - κ + F . The motion law is treated using direct approach numerically solved by two schemes, i. e., backward Euler semi-implicit and semi-discrete method of lines. Numerical stability is improved...

Elliptic problems with integral diffusion

Yannick Sire (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

In this paper, we review several recent results dealing with elliptic equations with non local diffusion. More precisely, we investigate several problems involving the fractional laplacian. Finally, we present a conformally covariant operator and the associated singular and regular Yamabe problem.

Evolution of convex entire graphs by curvature flows

Roberta Alessandroni, Carlo Sinestrari (2015)

Geometric Flows

We consider the evolution of an entire convex graph in euclidean space with speed given by a symmetric function of the principal curvatures. Under suitable assumptions on the speed and on the initial data, we prove that the solution exists for all times and it remains a graph. In addition, after appropriate rescaling, it converges to a homothetically expanding solution of the flow. In this way, we extend to a class of nonlinear speeds the well known results of Ecker and Huisken for the mean curvature...

Finite difference scheme for the Willmore flow of graphs

Tomáš Oberhuber (2007)

Kybernetika

In this article we discuss numerical scheme for the approximation of the Willmore flow of graphs. The scheme is based on the finite difference method. We improve the scheme we presented in Oberhuber [Obe-2005-2,Obe-2005-1] which is based on combination of the forward and the backward finite differences. The new scheme approximates the Willmore flow by the central differences and as a result it better preserves symmetry of the solution. Since it requires higher regularity of the solution, additional...

Forced anisotropic mean curvature flow of graphs in relative geometry

Dieu Hung Hoang, Michal Beneš (2014)

Mathematica Bohemica

The paper is concerned with the graph formulation of forced anisotropic mean curvature flow in the context of the heteroepitaxial growth of quantum dots. The problem is generalized by including anisotropy by means of Finsler metrics. A semi-discrete numerical scheme based on the method of lines is presented. Computational results with various anisotropy settings are shown and discussed.

Formazione di singolarità nel moto per curvatura media

Carlo Sinestrari (2001)

Bollettino dell'Unione Matematica Italiana

We study the formation of singularities for hypersurfaces evolving by mean curvature. After recalling the basic properties of the flow and the classical results about curves and convex surfaces, we give account of some recent developments of the theory for the case of surfaces with positive mean curvature. We show that for such surfaces we can obtain a–priori estimates on the principal curvatures which enable us to classify the singular profiles by the use of rescaling techniques.

Gaussian curvature based tangential redistribution of points on evolving surfaces

Medľa, Matej, Mikula, Karol (2017)

Proceedings of Equadiff 14

There exist two main methods for computing a surface evolution, level-set method and Lagrangian method. Redistribution of points is a crucial element in a Lagrangian approach. In this paper we present a point redistribution that compress quads in the areas with a high Gaussian curvature. Numerical method is presented for a mean curvature flow of a surface approximated by quads.

Geometric renormalization of large energy wave maps

Terence Tao (2004)

Journées Équations aux dérivées partielles

There has been much progress in recent years in understanding the existence problem for wave maps with small critical Sobolev norm (in particular for two-dimensional wave maps with small energy); a key aspect in that theory has been a renormalization procedure (either a geometric Coulomb gauge, or a microlocal gauge) which converts the nonlinear term into one closer to that of a semilinear wave equation. However, both of these renormalization procedures encounter difficulty if the energy of the...

Geometrization of three manifolds and Perelman's proof.

Joan Porti (2008)

RACSAM

This is a survey about Thurston’s geometrization conjecture of three manifolds and Perelman’s proof with the Ricci flow. In particular we review the essential contribution of Hamilton as well as some results in topology relevants for the proof.

Currently displaying 21 – 40 of 97