Remark on mixed foliate generic submanifolds
In this paper we study the balanced metrics on some Hartogs triangles of exponent , i.e., equipped with a natural Kähler form with where , , depending on parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for and we prove that is balanced if and only if and is an integer, are integers such that for all , and . Second, we prove that is Kähler-Einstein if and only if , where is a nonzero...
Any Kähler metric on the ball which is strongly asymptotic to complex hyperbolic space and whose scalar curvature is no less than the one of the complex hyperbolic space must be isometrically biholomorphic to it. This result has been known for some time in odd complex dimension and we provide here a proof in even dimension.
We provide a local classification of selfdual Einstein riemannian four-manifolds admitting a positively oriented hermitian structure and characterize those which carry a hyperhermitian, non-hyperkähler structure compatible with the negative orientation. We show that selfdual Einstein 4-manifolds obtained as quaternionic quotients of and are hermitian.
In this paper, we generalize the Gauduchon metrics on a compact complex manifold and define the functions on the space of its hermitian metrics.
We show that there is no proper CR submanifold with semi-flat normal connection and semi-parallel second fundamental form in a complex space form with non-zero constant holomorphic sectional curvature such that the dimension of the holomorphic tangent space is greater than 2.