Displaying 2101 – 2120 of 5556

Showing per page

Interpolation of Banach spaces, differential geometry and differential equations.

Stephen Semmes (1988)

Revista Matemática Iberoamericana

In recent years the study of interpolation of Banach spaces has seen some unexpected interactions with other fields. (...) In this paper I shall discuss some more interactions of interpolation theory with the rest of mathematics, beginning with some joint work with Coifman [CS]. Our basic idea was to look for the methods of interpolation that had interesting PDE's arising as examples.

Intrinsic geometric on the class of probability densities and exponential families.

Henryk Gzyl, Lázaro Recht (2007)

Publicacions Matemàtiques

We present a way of thinking of exponential farnilies as geodesic surfaces in the class of positive functions considered as a (multiplicative) sub-group G+ of the group G of all invertible elements in the algebra A of all complex bounded functions defined on a measurable space. For that we have to study a natural geometry on that algebra. The class D of densities with respect to a given rneasure will happen to be representatives of equivalence classes defining a projective space in A. The natural...

Introduction to mean curvature flow

Roberta Alessandroni (2008/2009)

Séminaire de théorie spectrale et géométrie

This is a short overview on the most classical results on mean curvature flow as a flow of smooth hypersurfaces. First of all we define the mean curvature flow as a quasilinear parabolic equation and give some easy examples of evolution. Then we consider the M.C.F. on convex surfaces and sketch the proof of the convergence to a round point. Some interesting results on the M.C.F. for entire graphs are also mentioned. In particular when we consider the case of dimension one, we can compute the equation...

Invariance of g -natural metrics on linear frame bundles

Oldřich Kowalski, Masami Sekizawa (2008)

Archivum Mathematicum

In this paper we prove that each g -natural metric on a linear frame bundle L M over a Riemannian manifold ( M , g ) is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define g -natural metrics on the orthonormal frame bundle O M and we prove the same invariance result as above for O M . Hence we see that, over a space ( M , g ) of constant sectional curvature, the bundle O M with an arbitrary g -natural metric G ˜ is locally homogeneous.

Currently displaying 2101 – 2120 of 5556