Displaying 321 – 340 of 575

Showing per page

Stabilities of F-Yang-Mills fields on submanifolds

Gao-Yang Jia, Zhen Rong Zhou (2013)

Archivum Mathematicum

In this paper, we define an F -Yang-Mills functional, and hence F -Yang-Mills fields. The first and the second variational formulas are calculated, and the stabilities of F -Yang-Mills fields on some submanifolds of the Euclidean spaces and the spheres are investigated, and hence the theories of Yang-Mills fields are generalized in this paper.

Stability analysis of phase boundary motion by surface diffusion with triple junction

Harald Garcke, Kazuo Ito, Yoshihito Kohsaka (2009)

Banach Center Publications

The linearized stability of stationary solutions for the surface diffusion flow with a triple junction is studied. We derive the second variation of the energy functional under the constraint that the enclosed areas are preserved and show a linearized stability criterion with the help of the H - 1 -gradient flow structure of the evolution problem and the analysis of eigenvalues of a corresponding differential operator.

Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation

Angela Handlovičová, Karol Mikula (2008)

Applications of Mathematics

We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way.

Stability of Tangential Locally Conformal Symplectic Forms

Cristian Ida (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper we firstly define a tangential Lichnerowicz cohomology on foliated manifolds. Next, we define tangential locally conformal symplectic forms on a foliated manifold and we formulate and prove some results concerning their stability.

Stability of the geodesic flow for the energy

Eric Boeckx, José Carmelo González-Dávila, Lieven Vanhecke (2002)

Commentationes Mathematicae Universitatis Carolinae

We study the stability of the geodesic flow ξ as a critical point for the energy functional when the base space is a compact orientable quotient of a two-point homogeneous space.

Stability under deformations of Hermite-Einstein almost Kähler metrics

Mehdi Lejmi (2014)

Annales de l’institut Fourier

On a 4 -dimensional compact symplectic manifold, we consider a smooth family of compatible almost-complex structures such that at time zero the induced metric is Hermite-Einstein almost-Kähler metric with zero or negative Hermitian scalar curvature. We prove, under certain hypothesis, the existence of a smooth family of compatible almost-complex structures, diffeomorphic at each time to the initial one, and inducing constant Hermitian scalar curvature metrics.

Stable bundles on hypercomplex surfaces

Ruxandra Moraru, Misha Verbitsky (2010)

Open Mathematics

A hypercomplex manifold is a manifold equipped with three complex structures I, J, K satisfying the quaternionic relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E be a vector bundle on M. We show that the moduli space of anti-self-dual connections on E is also hypercomplex, and admits a strong HKT metric. We also study manifolds with (4,4)-supersymmetry, that is, Riemannian manifolds equipped with a pair of strong HKT-structures that have opposite...

Currently displaying 321 – 340 of 575