Displaying 21 – 40 of 87

Showing per page

Ultrarigid tangents of sub-Riemannian nilpotent groups

Enrico Le Donne, Alessandro Ottazzi, Ben Warhurst (2014)

Annales de l’institut Fourier

We show that the tangent cone at the identity is not a complete quasiconformal invariant for sub-Riemannian nilpotent groups. Namely, we show that there exists a nilpotent Lie group equipped with left invariant sub-Riemannian metric that is not locally quasiconformally equivalent to its tangent cone at the identity. In particular, such spaces are not locally bi-Lipschitz homeomorphic. The result is based on the study of Carnot groups that are rigid in the sense that their only quasiconformal maps...

Umbilical characteristic number of Lagrangian mappings of 3-dimensional pseudooptical manifolds

Maxim È. Kazarian (1996)

Banach Center Publications

As shown by V. Vassilyev [V], D 4 ± singularities of arbitrary Lagrangian mappings of three-folds form no integral characteristic class. We show, nevertheless, that in the pseudooptical case the number of D 4 ± singularities counted with proper signs forms an invariant. We give a topological interpretation of this invariant, and its applications. The results of the paper may be considered as a 3-dimensional generalization of the results due to V. I. Arnold [A].

Un théorème d'unicité de l'hélicoïde

Eric Toubiana (1988)

Annales de l'institut Fourier

Nous montrons qu’une surface minimale complété, plongée dans R 3 / Z , de courbure totale finie et homéomorphe a S 2 moins deux points est l’hélicoïde.

Una classe di varietà quaternionali che ammettono una struttura complessa compatibile

Liviu Ornea, Paolo Piccinni (1997)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dimostra l'esistenza di una struttura complessa compatibile globale sulle varietà quaternionali di Hermite-Weyl compatte regolari. Se ne deducono alcune restrizioni sui numeri di Betti.

Unbounded harmonic functions on homogeneous manifolds of negative curvature

Richard Penney, Roman Urban (2002)

Colloquium Mathematicae

We study unbounded harmonic functions for a second order differential operator on a homogeneous manifold of negative curvature which is a semidirect product of a nilpotent Lie group N and A = ℝ⁺. We prove that if F is harmonic and satisfies some growth condition then F has an asymptotic expansion as a → 0 with coefficients from 𝓓'(N). Then we single out a set of at most two of these coefficients which determine F. Then using asymptotic expansions we are able to prove some theorems...

Unduloids and their geometry

Mariana Hadzhilazova, Ivaïlo M. Mladenov, John Oprea (2007)

Archivum Mathematicum

In this paper we consider non-compact cylinder-like surfaces called unduloids and study some aspects of their geometry. In particular, making use of a Kenmotsu-type representation of these surfaces, we derive explicit formulas for the lengths and areas of arbitrary segments, along with a formula for the volumes enclosed by them.

Currently displaying 21 – 40 of 87