Displaying 41 – 60 of 181

Showing per page

Generic one-step bracket-generating distributions of rank four

Chiara De Zanet (2015)

Archivum Mathematicum

We give a uniform, explicit description of the generic types of one–step bracket–generating distributions of rank four. A manifold carrying such a structure has dimension at least five and no higher than ten. For each of the generic types, we give a brief description of the resulting class of generic distributions and of geometries equivalent to them. For dimensions different from eight and nine, these are available in the literature. The remaining two cases are dealt with in my doctoral thesis.

Geodesic graphs in Randers g.o. spaces

Zdeněk Dušek (2020)

Commentationes Mathematicae Universitatis Carolinae

The concept of geodesic graph is generalized from Riemannian geometry to Finsler geometry, in particular to homogeneous Randers g.o. manifolds. On modified H-type groups which admit a Riemannian g.o. metric, invariant Randers g.o. metrics are determined and geodesic graphs in these Finsler g.o. manifolds are constructed. New structures of geodesic graphs are observed.

Geodesic graphs on special 7-dimensional g.o. manifolds

Zdeněk Dušek, Oldřich Kowalski (2006)

Archivum Mathematicum

In ( Dušek, Z., Kowalski, O. and Nikčević, S. Ž., New examples of Riemannian g.o. manifolds in dimension 7, Differential Geom. Appl. 21 (2004), 65–78.), the present authors and S. Nikčević constructed the 2-parameter family of invariant Riemannian metrics on the homogeneous manifolds M = [ SO ( 5 ) × SO ( 2 ) ] / U ( 2 ) and M = [ SO ( 4 , 1 ) × SO ( 2 ) ] / U ( 2 ) . They proved that, for the open dense subset of this family, the corresponding Riemannian manifolds are g.o. manifolds which are not naturally reductive. Now we are going to investigate the remaining metrics...

Currently displaying 41 – 60 of 181