Displaying 761 – 780 of 791

Showing per page

Only one of generalized gradients can be elliptic

Jerzy Kalina, Antoni Pierzchalski, Paweł Walczak (1997)

Annales Polonici Mathematici

Decomposing the space of k-tensors on a manifold M into the components invariant and irreducible under the action of GL(n) (or O(n) when M carries a Riemannian structure) one can define generalized gradients as differential operators obtained from a linear connection ∇ on M by restriction and projection to such components. We study the ellipticity of gradients defined in this way.

Open book structures and unicity of minimal submanifolds

R. Hardt, Harold Rosenberg (1990)

Annales de l'institut Fourier

We prove unicity of certain minimal submanifolds, for example Clifford annuli in S 3 . The idea is to consider the placement of the submanifold with respect to the (singular) foliation of S 3 by the Clifford annuli whose boundary are two fixed great circles a distance π / 2 apart.

Optics in Croke-Kleiner Spaces

Fredric D. Ancel, Julia M. Wilson (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

We explore the interior geometry of the CAT(0) spaces X α : 0 < α π / 2 , constructed by Croke and Kleiner [Topology 39 (2000)]. In particular, we describe a diffraction effect experienced by the family of geodesic rays that emanate from a basepoint and pass through a certain singular point called a triple point, and we describe the shadow this family casts on the boundary. This diffraction effect is codified in the Transformation Rules stated in Section 3 of this paper. The Transformation Rules have various applications....

Optimal destabilizing vectors in some Gauge theoretical moduli problems

Laurent Bruasse (2006)

Annales de l’institut Fourier

We prove that the well-known Harder-Narsimhan filtration theory for bundles over a complex curve and the theory of optimal destabilizing 1 -parameter subgroups are the same thing when considered in the gauge theoretical framework.Indeed, the classical concepts of the GIT theory are still effective in this context and the Harder-Narasimhan filtration can be viewed as a limit object for the action of the gauge group, in the direction of an optimal destabilizing vector. This vector appears as an extremal...

Currently displaying 761 – 780 of 791