Displaying 61 – 80 of 5550

Showing per page

A class of metrics on tangent bundles of pseudo-Riemannian manifolds

H. M. Dida, A. Ikemakhen (2011)

Archivum Mathematicum

We provide the tangent bundle T M of pseudo-Riemannian manifold ( M , g ) with the Sasaki metric g s and the neutral metric g n . First we show that the holonomy group H s of ( T M , g s ) contains the one of ( M , g ) . What allows us to show that if ( T M , g s ) is indecomposable reducible, then the basis manifold ( M , g ) is also indecomposable-reducible. We determine completely the holonomy group of ( T M , g n ) according to the one of ( M , g ) . Secondly we found conditions on the base manifold under which ( T M , g s ) ( respectively ( T M , g n ) ) is Kählerian, locally symmetric or Einstein...

A classification of certain submanifolds of an S-manifold

José L. Cabrerizo, Luis M. Fernández, Manuel Fernández (1991)

Annales Polonici Mathematici

A classification theorem is obtained for submanifolds with parallel second fundamental form of an 𝑆-manifold whose invariant f-sectional curvature is constant.

A classification of locally homogeneous connections on 2-dimensional manifolds via group-theoretical approach

Oldřich Kowalski, Barbara Opozda, Zdeněk Vlášek (2004)

Open Mathematics

The aim of this paper is to classify (lócally) all torsion-less locally homogeneous affine connections on two-dimensional manifolds from a group-theoretical point of view. For this purpose, we are using the classification of all non-equivalent transitive Lie algebras of vector fields in ℝ2 according to P.J. Olver [7].

A classification of Poisson homogeneous spaces of complex reductive Poisson-Lie groups

Eugene Karolinsky (2000)

Banach Center Publications

Let G be a complex reductive connected algebraic group equipped with the Sklyanin bracket. A classification of Poisson homogeneous G-spaces with connected isotropy subgroups is given. This result is based on Drinfeld's correspondence between Poisson homogeneous G-spaces and Lagrangian subalgebras in the double D𝖌 (here 𝖌 = Lie G). A geometric interpretation of some Poisson homogeneous G-spaces is also proposed.

A classification of the torsion tensors on almost contact manifolds with B-metric

Mancho Manev, Miroslava Ivanova (2014)

Open Mathematics

The space of the torsion (0,3)-tensors of the linear connections on almost contact manifolds with B-metric is decomposed in 15 orthogonal and invariant subspaces with respect to the action of the structure group. Three known connections, preserving the structure, are characterized regarding this classification.

Currently displaying 61 – 80 of 5550