Displaying 81 – 100 of 146

Showing per page

Differential geometry of grassmannians and the Plücker map

Sasha Anan’in, Carlos Grossi (2012)

Open Mathematics

Using the Plücker map between grassmannians, we study basic aspects of classic grassmannian geometries. For ‘hyperbolic’ grassmannian geometries, we prove some facts (for instance, that the Plücker map is a minimal isometric embedding) that were previously known in the ‘elliptic’ case.

Diffuse-interface treatment of the anisotropic mean-curvature flow

Michal Beneš (2003)

Applications of Mathematics

We investigate the motion by mean curvature in relative geometry by means of the modified Allen-Cahn equation, where the anisotropy is incorporated. We obtain the existence result for the solution as well as a result concerning the asymptotical behaviour with respect to the thickness parameter. By means of a numerical scheme, we can approximate the original law, as shown in several computational examples.

Dilations associated to flat curves.

Stephen Wainger (1991)

Publicacions Matemàtiques

I would like to give an exposition of the recent work of Tony Carbery, Mike Christ, Jim Vance, David Watson and myself concerning Hilbert transforms and Maximal functions along curves in R2 [CCVWW].

Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces

Zoltán M. Balogh, Jeremy T. Tyson, Kevin Wildrick (2013)

Analysis and Geometry in Metric Spaces

We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the...

Dirac and Plateau billiards in domains with corners

Misha Gromov (2014)

Open Mathematics

Groping our way toward a theory of singular spaces with positive scalar curvatures we look at the Dirac operator and a generalized Plateau problem in Riemannian manifolds with corners. Using these, we prove that the set of C 2-smooth Riemannian metrics g on a smooth manifold X, such that scalg(x) ≥ κ(x), is closed under C 0-limits of Riemannian metrics for all continuous functions κ on X. Apart from that our progress is limited but we formulate many conjectures. All along, we emphasize geometry,...

Dirac operators on hypersurfaces

Jarolím Bureš (1993)

Commentationes Mathematicae Universitatis Carolinae

In this paper some relation among the Dirac operator on a Riemannian spin-manifold N , its projection on some embedded hypersurface M and the Dirac operator on M with respect to the induced (called standard) spin structure are given.

Currently displaying 81 – 100 of 146