Displaying 101 – 120 of 146

Showing per page

Direct approach to mean-curvature flow with topological changes

Petr Pauš, Michal Beneš (2009)

Kybernetika

This contribution deals with the numerical simulation of dislocation dynamics. Dislocations are described by means of the evolution of a family of closed or open smooth curves Γ ( t ) : S 2 , t 0 . The curves are driven by the normal velocity v which is the function of curvature κ and the position. The evolution law reads as: v = - κ + F . The motion law is treated using direct approach numerically solved by two schemes, i. e., backward Euler semi-implicit and semi-discrete method of lines. Numerical stability is improved...

Discrétisation de zeta-déterminants d’opérateurs de Schrödinger sur le tore

Laurent Chaumard (2006)

Bulletin de la Société Mathématique de France

Nous donnons ici deux résultats sur le déterminant ζ -régularisé det ζ A d’un opérateur de Schrödinger A = Δ g + V sur une variété compacte . Nous construisons, pour = S 1 × S 1 , une suite ( G n , ρ n , Δ n ) G n est un graphe fini qui se plonge dans via ρ n de telle manière que ρ n ( G n ) soit une triangulation de et où  Δ n est un laplacien discret sur G n tel que pour tout potentiel V sur , la suite de réels det ( Δ n + V ) converge après renormalisation vers det ζ ( Δ g + V ) . Enfin, nous donnons sur toute variété riemannienne compacte ( , g ) de dimension inférieure ou égale à 3 ...

Distinguished connections on ( J 2 = ± 1 ) -metric manifolds

Fernando Etayo, Rafael Santamaría (2016)

Archivum Mathematicum

We study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of ( J 2 = ± 1 ) -metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among connections. We prove that the first canonical and the well adapted connections define a one-parameter family of adapted...

Distinguished geodesics and jacobi fields on first order jet spaces

Vladimir Balan, Nicoleta Voicu (2004)

Open Mathematics

In the framework of jet spaces endowed with a non-linear connection, the special curves of these spaces (h-paths, v-paths, stationary curves and geodesics) which extend the corresponding notions from Riemannian geometry are characterized. The main geometric objects and the paths are described and, in the case when the vertical metric is independent of fiber coordinates, the first two variations of energy and the extended Jacobi field equations are derived.

Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics

Alexandru Oană, Mircea Neagu (2012)

Communications in Mathematics

In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.

Divergence operators and odd Poisson brackets

Yvette Kosmann-Schwarzbach, Juan Monterde (2002)

Annales de l’institut Fourier

We define the divergence operators on a graded algebra, and we show that, given an odd Poisson bracket on the algebra, the operator that maps an element to the divergence of the hamiltonian derivation that it defines is a generator of the bracket. This is the “odd laplacian”, Δ , of Batalin-Vilkovisky quantization. We then study the generators of odd Poisson brackets on supermanifolds, where divergences of graded vector fields can be defined either in terms of berezinian volumes or of graded connections. Examples...

Currently displaying 101 – 120 of 146