A pair of non-self mappings in cone metric spaces
The Polish space Y constructed in [vM1] admits no nontrivial isotopy. Yet, there exists a Polish group that acts transitively on Y.
On the set of real numbers we consider a poset (by inclusion) of topologies , where , such that iff . The poset has the minimal element , the Euclidean topology, and the maximal element , the Sorgenfrey topology. We are interested when two topologies and (especially, for ) from the poset define homeomorphic spaces and . In particular, we prove that for a closed subset of the space is homeomorphic to the Sorgenfrey line iff is countable. We study also common properties...
We obtain a principal topology and some related results. We also give some hints of possible applications. Some mathematical systems are both lattice and topological space. We show that a topology defined on the any bounded lattice is definable in terms of uninorms. Also, we see that these topologies satisfy the condition of the principal topology. These topologies can not be metrizable except for the discrete metric case. We show an equivalence relation on the class of uninorms on a bounded lattice...
In this paper, a simple proof is given for the following theorem due to Blair [7], Blair-Hager [8] and Hager-Johnson [12]: A Tychonoff space is -embedded in every larger Tychonoff space if and only if is almost compact or Lindelöf. We also give a simple proof of a recent theorem of Bella-Yaschenko [6] on absolute embeddings.