L-guilds and binary L-merotopies.
If the minimum problem () is the limit, in a variational sense, of a sequence of minimum problems with obstacles of the type then () can be written in the form without any additional constraint.
Se il problema di minimo è il limite, in senso variazionale, di una successione di problemi di minimo con ostacoli del tipo allora può essere scritto nella forma dove è un conveniente rappresentante di e è una misura non negativa.
Arhangel’skii proved that if a first countable Hausdorff space is Lindelöf, then its cardinality is at most . Such a clean upper bound for Lindelöf spaces in the larger class of spaces whose points are has been more elusive. In this paper we continue the agenda started by the second author, [Topology Appl. 63 (1995)], of considering the cardinality problem for spaces satisfying stronger versions of the Lindelöf property. Infinite games and selection principles, especially the Rothberger property,...
We give an example of a compact space X whose iterated continuous function spaces , are Lindelöf, but X is not a Corson compactum. This solves a problem of Gul’ko (Problem 1052 in [11]). We also provide a theorem concerning the Lindelöf property in the function spaces on compact scattered spaces with the th derived set empty, improving some earlier results of Pol [12] in this direction.