Handlebody splittings of compact 3-manifolds with boundary.
The purpose of this paper is to relate several generalizations of the notion of the Heegaard splitting of a closed 3-manifold to compact, orientable 3-manifolds with nonempty boundary.
The purpose of this paper is to relate several generalizations of the notion of the Heegaard splitting of a closed 3-manifold to compact, orientable 3-manifolds with nonempty boundary.
Based on some analogies with the Hodge theory of isolated hypersurface singularities, we define Hodge–type numerical invariants of any, not necessarily algebraic, link in a three–sphere. We call them H–numbers. They contain the same amount of information as the (non degenerate part of the) real Seifert matrix. We study their basic properties, and we express the Tristram–Levine signatures and the higher order Alexander polynomial in terms of them. Motivated by singularity theory, we also introduce...
A homology theory is developed for set-theoretic Yang-Baxter equations, and knot invariants are constructed by generalized colorings by biquandles and Yang-Baxter cocycles.
Nous considérons un germe de feuilletage holomorphe singulier non-dicritique défini sur une boule fermée , satisfaisant des hypothèses génériques, de courbe de séparatrice . Nous démontrons l’existence d’un voisinage ouvert de dans tel que, pour toute feuille de , l’inclusion naturelle induit un monomorphisme au niveau du groupe fondamental. Pour cela, nous introduisons la notion géométrique de « connexité feuilletée » avec laquelle nous réinterprétons la notion d’incompressibilité....
Let be a compact connected oriented surface with one boundary component, and let be the fundamental group of . The Johnson filtration is a decreasing sequence of subgroups of the Torelli group of , whose -th term consists of the self-homeomorphisms of that act trivially at the level of the -th nilpotent quotient of . Morita defined a homomorphism from the -th term of the Johnson filtration to the third homology group of the -th nilpotent quotient of . In this paper, we replace groups...
This paper provides an introduction to the basics of Heegaard Floer homology with some emphasis on the hat theory and to the contact geometric invariants in the theory. The exposition is designed to be comprehensible to people without any prior knowledge of the subject.