Displaying 81 – 100 of 252

Showing per page

Hodge–type structures as link invariants

Maciej Borodzik, András Némethi (2013)

Annales de l’institut Fourier

Based on some analogies with the Hodge theory of isolated hypersurface singularities, we define Hodge–type numerical invariants of any, not necessarily algebraic, link in a three–sphere. We call them H–numbers. They contain the same amount of information as the (non degenerate part of the) real Seifert matrix. We study their basic properties, and we express the Tristram–Levine signatures and the higher order Alexander polynomial in terms of them. Motivated by singularity theory, we also introduce...

Incompressibilité des feuilles de germes de feuilletages holomorphes singuliers

David Marín, Jean-François Mattei (2008)

Annales scientifiques de l'École Normale Supérieure

Nous considérons un germe de feuilletage holomorphe singulier non-dicritique défini sur une boule fermée 𝔹 ¯ 2 , satisfaisant des hypothèses génériques, de courbe de séparatrice S . Nous démontrons l’existence d’un voisinage ouvert U de S dans 𝔹 ¯ tel que, pour toute feuille L de | ( U S ) , l’inclusion naturelle ı : L U S induit un monomorphisme ı * : π 1 ( L ) π 1 ( U S ) au niveau du groupe fondamental. Pour cela, nous introduisons la notion géométrique de « connexité feuilletée » avec laquelle nous réinterprétons la notion d’incompressibilité....

Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant

Gwénaël Massuyeau (2012)

Bulletin de la Société Mathématique de France

Let Σ be a compact connected oriented surface with one boundary component, and let π be the fundamental group of Σ . The Johnson filtration is a decreasing sequence of subgroups of the Torelli group of Σ , whose k -th term consists of the self-homeomorphisms of Σ that act trivially at the level of the k -th nilpotent quotient of π . Morita defined a homomorphism from the k -th term of the Johnson filtration to the third homology group of the k -th nilpotent quotient of π . In this paper, we replace groups...

Introduction to the basics of Heegaard Floer homology

Bijan Sahamie (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

This paper provides an introduction to the basics of Heegaard Floer homology with some emphasis on the hat theory and to the contact geometric invariants in the theory. The exposition is designed to be comprehensible to people without any prior knowledge of the subject.

Currently displaying 81 – 100 of 252