Displaying 21 – 40 of 241

Showing per page

Andreev’s Theorem on hyperbolic polyhedra

Roland K.W. Roeder, John H. Hubbard, William D. Dunbar (2007)

Annales de l’institut Fourier

In 1970, E.M.Andreev published a classification of all three-dimensional compact hyperbolic polyhedra (other than tetrahedra) having non-obtuse dihedral angles. Given a combinatorial description of a polyhedron,  C , Andreev’s Theorem provides five classes of linear inequalities, depending on  C , for the dihedral angles, which are necessary and sufficient conditions for the existence of a hyperbolic polyhedron realizing C with the assigned dihedral angles. Andreev’s Theorem also shows that the resulting...

Around the Borromean link.

José María Montesinos Amilibia (2008)

RACSAM

This is a survey of some consequences of the fact that the fundamental group of the orbifold with singular set the Borromean link and isotropy cyclic of order 4 is a universal kleinian group.

Au bord de certains polyèdres hyperboliques

Marc Bourdon (1995)

Annales de l'institut Fourier

Le cadre de cet article est celui des groupes et des espaces hyperboliques de M.  Gromov. Il est motivé par la question suivante : comment différencier deux groupes hyperboliques à quasi-isométrie près ? On illustre ce problème en détaillant un exemple de M. Gromov issu de Asymptotic invariants for infinite groups. On décrit une famille infinie de groupes hyperboliques, deux à deux non quasi-isométriques, de bord la courbe de Menger. La méthode consiste à étudier leur structure quasi-conforme au...

Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen

Mahan Mj (2009/2010)

Séminaire de théorie spectrale et géométrie

The notion of i-bounded geometry generalises simultaneously bounded geometry and the geometry of punctured torus Kleinian groups. We show that the limit set of a surface Kleinian group of i-bounded geometry is locally connected by constructing a natural Cannon-Thurston map.

Currently displaying 21 – 40 of 241