Finite group actions on acyclic -complexes
We define finite type invariants for cyclic equivalence classes of nanophrases and construct universal invariants. Also, we identify the universal finite type invariant of degree 1 essentially with the linking matrix. It is known that extended Arnold basic invariants to signed words are finite type invariants of degree 2, by Fujiwara's work. We give another proof of this result and show that those invariants do not provide the universal one of degree 2.
We consider a contractible closure of the space of Legendrian knots in the standard contact 3-space. We show that in this context the space of finite-type complex-valued invariants of Legendrian knots is isomorphic to that of framed knots in with an extra order 1 generator (Maslov index) added.
We consider the hierarchy flats, a combinatorial generalization of flat virtual links proposed by Louis Kauffman. An approach to constructing invariants for hierarchy flats is presented; several examples are given.
We give an explicit expression of a two-parameter family of Flensted-Jensen’s functions on a concrete realization of the universal covering group of . We prove that these functions are, up to a phase factor, radial eigenfunctions of the Landau Hamiltonian on the hyperbolic disc with a magnetic field strength proportional to , and corresponding to the eigenvalue .