Growth functions of surface groups.
Arnold conjectured that every Legendrian knot in the standard contact structure on the 3-sphere possesses a haracteristic chord with respect to any contact form. I confirm this conjecture if the know has Thurston-Bennequin invariant . More generally, existence of chords is proved for a standard Legendrian unknot on the boundary of a subcritical Stein manifold of any dimension. There is also a multiplicity result which implies in some situations existence of infinitely many chords. The proof relies...
The purpose of this paper is to relate several generalizations of the notion of the Heegaard splitting of a closed 3-manifold to compact, orientable 3-manifolds with nonempty boundary.
By means of branched coverings techniques, we prove that the Heegaard genus and the regular genus of an orientable 3-manifold with boundary coincide.
We show that any Heegaard splitting of the pair of the solid torus (≅D2xS1) and its core loop (an interior point xS1) is standard, using the notion of Heegaard splittings of pairs of 3-manifolds and properly imbedded graphs, which is defined in this paper.
We prove that the natural HNN-extensions of the fractional Fibonacci groups are the fundamental groups of high-dimensional knot complements. We also give some characterization and interpretation of these knots. In particular we show that some of them are 2-knots.