On a relation between torsion numbers and Alexander matrix of a knot
We discuss relations among several invariants of 3-manifolds including Meyer's function, the η-invariant, the von Neumann ρ-invariant and the Casson invariant from the viewpoint of the mapping class group of a surface.
We define a type of biquandle which is a generalization of symplectic quandles. We use the extra structure of these bilinear biquandles to define new knot and link invariants and give some examples.
Let be a compact, orientable, irreducible 3-manifold with a torus. We show that there can be infinitely many slopes on realized by the boundary curves of immersed, incompressible, - incompressible surfaces in which are embedded in a neighborhood of .
We prove that if the Walsh bipartite map of a regular oriented hypermap is also orientably regular then both and have the same chirality group, the covering core of (the smallest regular map covering ) is the Walsh bipartite map of the covering core of and the closure cover of (the greatest regular map covered by ) is the Walsh bipartite map of the closure cover of . We apply these results to the family of toroidal chiral hypermaps induced by the family of toroidal bipartite maps...
Let be a triangulable compact manifold. We prove that, among closed subgroups of (the identity component of the group of homeomorphisms of ), the subgroup consisting of volume preserving elements is maximal.
Józef Przytycki introduced skein modules of 3-manifolds and skein deformation initiating algebraic topology based on knots. We discuss the generalized skein modules of Walker, defined by fields and local relations. Some results by Przytycki are proven in a more general setting of fields defined by decorated cell-complexes in manifolds. A construction of skein theory from embedded TQFT-functors is given, and the corresponding background is developed. The possible coloring of fields by elements of...