Displaying 161 – 180 of 196

Showing per page

An infinite torus braid yields a categorified Jones-Wenzl projector

Lev Rozansky (2014)

Fundamenta Mathematicae

A sequence of Temperley-Lieb algebra elements corresponding to torus braids with growing twisting numbers converges to the Jones-Wenzl projector. We show that a sequence of categorification complexes of these braids also has a limit which may serve as a categorification of the Jones-Wenzl projector.

An introduction to the abelian Reidemeister torsion of three-dimensional manifolds

Gwénaël Massuyeau (2011)

Annales mathématiques Blaise Pascal

These notes accompany some lectures given at the autumn school “Tresses in Pau” in October 2009. The abelian Reidemeister torsion for 3 -manifolds, and its refinements by Turaev, are introduced. Some applications, including relations between the Reidemeister torsion and other classical invariants, are surveyed.

An operator invariant for handlebody-knots

Kai Ishihara, Atsushi Ishii (2012)

Fundamenta Mathematicae

A handlebody-knot is a handlebody embedded in the 3-sphere. We improve Luo's result about markings on a surface, and show that an IH-move is sufficient to investigate handlebody-knots with spatial trivalent graphs without cut-edges. We also give fundamental moves with a height function for handlebody-tangles, which helps us to define operator invariants for handlebody-knots. By using the fundamental moves, we give an operator invariant.

Andreev’s Theorem on hyperbolic polyhedra

Roland K.W. Roeder, John H. Hubbard, William D. Dunbar (2007)

Annales de l’institut Fourier

In 1970, E.M.Andreev published a classification of all three-dimensional compact hyperbolic polyhedra (other than tetrahedra) having non-obtuse dihedral angles. Given a combinatorial description of a polyhedron,  C , Andreev’s Theorem provides five classes of linear inequalities, depending on  C , for the dihedral angles, which are necessary and sufficient conditions for the existence of a hyperbolic polyhedron realizing C with the assigned dihedral angles. Andreev’s Theorem also shows that the resulting...

Applications of topology to DNA

Isabel Darcy, De Sumners (1998)

Banach Center Publications

The following is an expository article meant to give a simplified introduction to applications of topology to DNA.

Arc presentations of knots and links

Peter Cromwell (1998)

Banach Center Publications

s paper presents some examples and a survey of results concerning a new way of presenting knots and links, together with the corresponding link invariant. More detailed accounts are given in [Cr, C-N, Nu1, Nu2, Nu3].

Currently displaying 161 – 180 of 196