Displaying 641 – 660 of 2024

Showing per page

Fibrations sur le cercle et surfaces complexes

Anne Pichon (2001)

Annales de l’institut Fourier

Nous donnons des conditions nécessaires et suffisantes pour qu’une variété de dimension 3 se réalise comme bord d’une famille dégénérée de courbes complexes, et pour qu’un entrelacs dans une 3-variété se réalise comme bord d’un germe de fonction analytique en un point d’une surface complexe normale. Ces résultats s’appuient sur une étude des objets topologiques fournis par de telles fonctions holomorphes : soit M une variété de Waldhausen et soit L une union finie, éventuellement vide, de fibres...

Finitude homotopique et isotopique des structures de contact tendues

Vincent Colin, Emmanuel Giroux, Ko Honda (2009)

Publications Mathématiques de l'IHÉS

Soit V une variété close de dimension 3. Dans cet article, on montre que les classes dhomotopie de champs de plans sur V qui contiennent des structures de contact tendues sont en nombre fini et que, si V est atoroïdale, les classes disotopie des structures de contact tendues sur V sont elles aussi en nombre fini.

Currently displaying 641 – 660 of 2024