Displaying 81 – 100 of 202

Showing per page

The Łojasiewicz gradient inequality in a neighbourhood of the fibre

Janusz Gwoździewicz, Stanisław Spodzieja (2005)

Annales Polonici Mathematici

Some estimates of the Łojasiewicz gradient exponent at infinity near any fibre of a polynomial in two variables are given. An important point in the proofs is a new Charzyński-Kozłowski-Smale estimate of critical values of a polynomial in one variable.

The Mumford conjecture

Geoffrey Powell (2004/2005)

Séminaire Bourbaki

The Mumford Conjecture asserts that the rational cohomology of the stable moduli space of Riemann surfaces is a polynomial algebra on the Mumford-Morita-Miller characteristic classes; this can be reformulated in terms of the classifying space B Γ derived from the mapping class groups. The conjecture admits a topological generalization, inspired by Tillmann’s theorem that B Γ admits an infinite loop space structure after applying Quillen’s plus construction. The text presents the proof by Madsen and...

The Nash-Kuiper process for curves

Vincent Borrelli, Saïd Jabrane, Francis Lazarus, Boris Thibert (2011/2012)

Séminaire de théorie spectrale et géométrie

A strictly short embedding is an embedding of a Riemannian manifold into an Euclidean space that strictly shortens distances. From such an embedding, the Nash-Kuiper process builds a sequence of maps converging toward an isometric embedding. In that paper, we describe this Nash-Kuiper process in the case of curves. We state an explicit formula for the limit normal map and perform its Fourier series expansion. We then adress the question of Holder regularity of the limit map.

The parity of the Maslov index and the even cobordism category

Patrick M. Gilmer, Khaled Qazaqzeh (2005)

Fundamenta Mathematicae

We give a formula for the parity of the Maslov index of a triple of Lagrangian subspaces of a skew symmetric bilinear form over ℝ. We define an index two subcategory (the even subcategory) of a 3-dimensional cobordism category. The objects of the category are surfaces equipped with Lagrangian subspaces of their real first homology. This generalizes a result of the first author where surfaces are equipped with Lagrangian subspaces of their rational first homology.

The Poincaré-Bendixson theorem and arational foliations on the sphere

Igor Nikolaev (1996)

Annales de l'institut Fourier

Foliations on the 2-sphere with a finite number of non-orientable singularities are considered. For this class a Poincaré-Bendixson theorem is established. In particular, the work gives an answer to a problem of H. Rosenberg concerning labyrinths.

The rational homotopy of Thom spaces and the smoothing of isolated singularities

Stefan Papadima (1985)

Annales de l'institut Fourier

Rational homotopy methods are used for studying the problem of the topological smoothing of complex algebraic isolated singularities. It is shown that one may always find a suitable covering which is smoothable. The problem of the topological smoothing (including the complex normal structure) for conical singularities is considered in the sequel. A connection is established between the existence of certain relations between the normal Chern degrees of a smooth projective variety and the question...

The reduction of quantum invariants of 4-thickenings

Ivelina Bobtcheva, Frank Quinn (2005)

Fundamenta Mathematicae

We study the sensibility of an invariant of 2-dimensional CW complexes in the case when it comes as a reduction (through a change of ring) of a modular invariant of 4-dimensional thickenings of such complexes: it is shown that if the Euler characteristic of the 2-complex is greater than or equal to 1, its invariant depends only on homology. To see what is happening when the Euler characteristic is smaller than 1, we use ideas of Kerler and construct, from any tortile category, an invariant of 4-thickenings...

Currently displaying 81 – 100 of 202