Displaying 101 – 120 of 210

Showing per page

Splitting obstructions and properties of objects in the Nil categories

Tadeusz Koźniewski (1999)

Fundamenta Mathematicae

We show that the objects of Bass-Farrell categories which represent 0 in the corresponding Nil groups are precisely those which are stably triangular. This extends to Waldhausen's Nil group of the amalgamated free product with index 2 factors. Applications include a description of Cappell's special UNil group and reformulations of those splitting and fibering theorems which use the Nil groups.

Stabilité des C * -algèbres de feuilletages

Michel Hilsum, Georges Skandalis (1983)

Annales de l'institut Fourier

Soit A la C * -algèbre, ou bien réduite ou bien maximale, associée à la variété feuilletée ( V , F ) , et K la C * -algèbre élémentaire des opérateurs compacts. Alors, si dim F 0 , on montre que A est isomorphe à A K .

Stability of foliations induced by rational maps

F. Cukierman, J. V. Pereira, I. Vainsencher (2009)

Annales de la faculté des sciences de Toulouse Mathématiques

We show that the singular holomorphic foliations induced by dominant quasi-homogeneous rational maps fill out irreducible components of the space q ( r , d ) of singular foliations of codimension q and degree d on the complex projective space r , when 1 q r - 2 . We study the geometry of these irreducible components. In particular we prove that they are all rational varieties and we compute their projective degrees in several cases.

Stability of Tangential Locally Conformal Symplectic Forms

Cristian Ida (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper we firstly define a tangential Lichnerowicz cohomology on foliated manifolds. Next, we define tangential locally conformal symplectic forms on a foliated manifold and we formulate and prove some results concerning their stability.

Currently displaying 101 – 120 of 210