Opérations géométriques en cobordisme complexe
Michèle Audin (1983)
Bulletin de la Société Mathématique de France
Cesare Parenti (1974)
Rendiconti del Seminario Matematico della Università di Padova
Chen, Weimin (2004)
Geometry & Topology
Genaro Hernandez-Mada, Humberto Abraham Martinez-Gil (2025)
Archivum Mathematicum
We prove that there is an orbit-cone correspondence for the proalgebraic completion of normal toric varieties, which is analogous to the classical orbit-cone correspondence for toric varieties.
Michal Krupka (1994)
Mathematica Slovaca
S. Batterson, M. Handel, C. Narasimhan (1981)
Inventiones mathematicae
D. Kotschick (1992)
Mathematische Annalen
Hetyei, Gábor (2004)
The Electronic Journal of Combinatorics [electronic only]
Vakhania, N. (1994)
Georgian Mathematical Journal
A. Fröhlich (1985)
Journal für die reine und angewandte Mathematik
Szczepański, Andrzej (1996)
Bulletin of the Belgian Mathematical Society - Simon Stevin
Goodman, Noah (2005)
Algebraic & Geometric Topology
Lisca, Paolo, Stipsicz, András I. (2004)
Geometry & Topology
N. Hashiguchi (1992)
Annales de l'institut Fourier
By choosing certain Birkhoff’s section to the geodesic flow of a negatively curved closed surface, E. Ghys showed that the unstable foliation of the geodesic flow has a transversely piecewise linear structure. We explicitly describe the holonomy homomorphism induced by this transversely piecewise linear structure and calculate its discrete Godbillon-Vey invariant.
Sylvain Cappell, Sh. Weinberger (1985)
Commentarii mathematici Helvetici
Wilhelm Singhof (1982)
Mathematische Annalen
Wilhelm Singhof, Dieter Wemmer (1986)
Mathematische Annalen
W. Singhof, D. Wemmer (1986)
Mathematische Annalen
Gabriele Anzellotti (1984)
Manuscripta mathematica
Allen E. Hatcher (1973)
Annales de l'institut Fourier
This paper gives an expository account of the author’s work on the “second” obstruction to deforming a pseudo-isotopy on a smooth compact manifold to an isotopy. Using earlier results on the “first” obstruction, due independently to J.B. Wagoner and the author, this completes the generalization of J. Cerf’s pseudo-isotopy theorem to the non-simply-connected case.