The link of an extrovert divide
Some estimates of the Łojasiewicz gradient exponent at infinity near any fibre of a polynomial in two variables are given. An important point in the proofs is a new Charzyński-Kozłowski-Smale estimate of critical values of a polynomial in one variable.
The Mumford Conjecture asserts that the rational cohomology of the stable moduli space of Riemann surfaces is a polynomial algebra on the Mumford-Morita-Miller characteristic classes; this can be reformulated in terms of the classifying space derived from the mapping class groups. The conjecture admits a topological generalization, inspired by Tillmann’s theorem that admits an infinite loop space structure after applying Quillen’s plus construction. The text presents the proof by Madsen and...
A strictly short embedding is an embedding of a Riemannian manifold into an Euclidean space that strictly shortens distances. From such an embedding, the Nash-Kuiper process builds a sequence of maps converging toward an isometric embedding. In that paper, we describe this Nash-Kuiper process in the case of curves. We state an explicit formula for the limit normal map and perform its Fourier series expansion. We then adress the question of Holder regularity of the limit map.
We give a formula for the parity of the Maslov index of a triple of Lagrangian subspaces of a skew symmetric bilinear form over ℝ. We define an index two subcategory (the even subcategory) of a 3-dimensional cobordism category. The objects of the category are surfaces equipped with Lagrangian subspaces of their real first homology. This generalizes a result of the first author where surfaces are equipped with Lagrangian subspaces of their rational first homology.
Foliations on the 2-sphere with a finite number of non-orientable singularities are considered. For this class a Poincaré-Bendixson theorem is established. In particular, the work gives an answer to a problem of H. Rosenberg concerning labyrinths.