Previous Page 2

Displaying 21 – 29 of 29

Showing per page

Pseudo-immersions

Henri Joris, Emmanuel Preissmann (1987)

Annales de l'institut Fourier

Si f est un germe 𝒞 de ( R n , 0 ) , on dira que f est une pseudo-immersion (on notera f Ψ n , m ) si tous les germes continus g de ( R , 0 ) dans ( R m , 0 ) , tels que f g 𝒞 sont eux-mêmes 𝒞 . On détermine complètement Ψ n , 1 , et on montre que Ψ 2 , 2 = Diff 2 . Par ailleurs, si K = R ou C et si g est une application de K dans K telle que g 2 et g 3 sont 𝒞 , alors g est aussi 𝒞 . Si K = H (corps des hamiloniens) alors cette implication n’est plus vraie.

Pseudo-laplaciens. I

Yves Colin de Verdière (1982)

Annales de l'institut Fourier

On construit, sur une variété riemannienne X de dimension 2 ou 3 , les extensions autoadjointes Δ α , x 0 ( α R / π Z ) de la restriction du laplacien aux fonctions nulles au voisinage d’un point x 0 de X . On calcule explicitement les valeurs propres de Δ α , x 0 .

Pseudo-laplaciens II

Yves Colin de Verdière (1983)

Annales de l'institut Fourier

Dans cet article, nous étudions une famille d’opérateurs auto-adjoints Δ a dérivés du laplacien sur une surface de Riemann d’aire finie et ayant au voisinage de l’infini la structure d’un cylindre [ b , + [ × R / Z muni d’une métrique à courbure constante - 1 . Après avoir étudié la théorie spectrale de tels opérateurs, nous donnons, comme application, un théorème prévoyant l’absence générique de valeurs propres immergées dans le spectre continu du laplacien de ces surfaces. Nous montrons enfin comment ceci permet de...

Currently displaying 21 – 29 of 29

Previous Page 2