Moduli of half conformally flat structures.
Une classification complète des stabilisateurs coadjoints du groupe de Bott-Virasoro est obtenue par une méthode essentiellement géométrique. L’outil de base est le nombre de rotation d’un difféomorphisme du cercle. En particulier, nous mettons en évidence la présence de groupes d’isotropie non-connexes et montrons que la transformation de Miura des opérateurs de Hill peut s’interpréter comme une application moment sur l’espace des structures affines du cercle.
We prove that four manifolds diffeomorphic on the complement of a point have the same Donaldson invariants.
Let a compact connected oriented 4-manifold. We study the space of -structures of fixed fundamental class, as an infinite dimensional principal bundle on the manifold of riemannian metrics on . In order to study perturbations of the metric in Seiberg-Witten equations, we study the transversality of universal equations, parametrized with all -structures . We prove that, on a complex Kähler surface, for an hermitian metric sufficiently close to the original Kähler metric, the moduli space...
Let be a closed surface, a compact Lie group, with Lie algebra , and a principal -bundle. In earlier work we have shown that the moduli space of central Yang-Mills connections, with reference to appropriate additional data, is stratified by smooth symplectic manifolds and that the holonomy yields a homeomorphism from onto a certain representation space , in fact a diffeomorphism, with reference to suitable smooth structures and , where denotes the universal central extension of...
We give a complete classification of germs of generic 2-distributions on 3-manifolds. By a 2-distribution we mean either a module generated by two vector fields (at singular points its dimension decreases) or a Pfaff equation, i.e. a module generated by a differential 1-form (at singular points the dimension of its kernel increases).
Based on the discovery that the δ-invariant is the symplectic codimension of a parametric plane curve singularity, we classify the simple and uni-modal singularities of parametric plane curves under symplectic equivalence. A new symplectic deformation theory of curve singularities is established, and the corresponding cyclic symplectic moduli spaces are reconstructed as canonical ambient spaces for the diffeomorphism moduli spaces which are no longer Hausdorff spaces.
We discuss the geometry of the Yang-Mills configuration spaces and moduli spaces with respect to the metric. We also consider an application to a de Rham-theoretic version of Donaldson’s μ-map.