Displaying 341 – 360 of 423

Showing per page

The diffeomorphism group of a Lie foliation

Gilbert Hector, Enrique Macías-Virgós, Antonio Sotelo-Armesto (2011)

Annales de l’institut Fourier

We describe explicitly the group of transverse diffeomorphisms of several types of minimal linear foliations on the torus T n , n 2 . We show in particular that non-quadratic foliations are rigid, in the sense that their only transverse diffeomorphisms are ± Id and translations. The description derives from a general formula valid for the group of transverse diffeomorphisms of any minimal Lie foliation on a compact manifold. Our results generalize those of P. Donato and P. Iglesias for T 2 , P. Iglesias and...

The homotopy type of the space of degree 0 immersed plane curves.

Hiroki Kodama, Peter W. Michor (2006)

Revista Matemática Complutense

The space Bi0 = Imm0 (S1, R2) / Diff (S1) of all immersions of rotation degree 0 in the plane modulo reparameterizations has homotopy groups π1(Bi0) = Z, π2(Bi0) = Z, and πk(Bi0) = 0 for k ≥ 3.

The Lie group of real analytic diffeomorphisms is not real analytic

Rafael Dahmen, Alexander Schmeding (2015)

Studia Mathematica

We construct an infinite-dimensional real analytic manifold structure on the space of real analytic mappings from a compact manifold to a locally convex manifold. Here a map is defined to be real analytic if it extends to a holomorphic map on some neighbourhood of the complexification of its domain. As is well known, the construction turns the group of real analytic diffeomorphisms into a smooth locally convex Lie group. We prove that this group is regular in the sense of Milnor. ...

Currently displaying 341 – 360 of 423