A representation of the space ... (K).
We describe all the group morphisms from the group of orientation-preserving homeomorphisms of the circle to the group of homeomorphisms of the annulus or of the torus.
The classical Arzela-Ascoli theorem is a compactness result for families of functions depending on bounds on the derivatives of the functions, and is of invaluable use in many fields of mathematics. In this paper, inspired by a result of Corlette, we prove an analogous compactness result for families of immersed submanifolds which depends only on bounds on the derivatives of the second fundamental forms of these submanifolds. We then show how the result of Corlette may be obtained as an immediate...
Let be a surface with a symplectic form, let be a symplectomorphism of , and let be the mapping torus of . We show that the dimensions of moduli spaces of embedded pseudoholomorphic curves in , with cylindrical ends asymptotic to periodic orbits of or multiple covers thereof, are bounded from above by an additive relative index. We deduce some compactness results for these moduli spaces. This paper establishes some of the foundations for a program with Michael Thaddeus, to understand...
We study doubly-periodic instantons, i.e. instantons on the product of a 1-dimensional complex torus with a complex line , with quadratic curvature decay. We determine the asymptotic behaviour of these instantons, constructing new asymptotic invariants. We show that the underlying holomorphic bundle extends to . The converse statement is also true, namely a holomorphic bundle on which is flat on the torus at infinity, and satisfies a stability condition, comes from a doubly-periodic instanton....