Displaying 61 – 80 of 132

Showing per page

Jets and the variational calculus

David J. Saunders (2021)

Communications in Mathematics

We review the approach to the calculus of variations using Ehresmann's theory of jets. We describe different types of jet manifold, different types of variational problem and different cohomological structures associated with such problems.

Locally variational invariant field equations and global currents: Chern-Simons theories

Mauro Francaviglia, M. Palese, E. Winterroth (2012)

Communications in Mathematics

We introduce the concept of conserved current variationally associated with locally variational invariant field equations. The invariance of the variation of the corresponding local presentation is a sufficient condition for the current beeing variationally equivalent to a global one. The case of a Chern-Simons theory is worked out and a global current is variationally associated with a Chern-Simons local Lagrangian.

Natural first order Lagrangians for immersions

Jerzy J. Konderak (1998)

Annales Polonici Mathematici

We define natural first order Lagrangians for immersions of Riemannian manifolds and we prove a bijective correspondence between such Lagrangians and the symmetric functions on an open subset of m-dimensional Euclidean space.

On a generalization of Helmholtz conditions

Radka Malíková (2009)

Acta Mathematica Universitatis Ostraviensis

Helmholtz conditions in the calculus of variations are necessary and sufficient conditions for a system of differential equations to be variational ‘as it stands’. It is known that this property geometrically means that the dynamical form representing the equations can be completed to a closed form. We study an analogous property for differential forms of degree 3, so-called Helmholtz-type forms in mechanics ( n = 1 ), and obtain a generalization of Helmholtz conditions to this case.

On a variational theory of light rays on Lorentzian manifolds

Fabio Giannoni, Antonio Masiello (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this Note, by using a generalization of the classical Fermat principle, we prove the existence and multiplicity of lightlike geodesics joining a point with a timelike curve on a class of Lorentzian manifolds, satisfying a suitable compactness assumption, which is weaker than the globally hyperbolicity.

On multivortex solutions in Chern-Simons gauge theory

Michael Struwe, Gabriella Tarantello (1998)

Bollettino dell'Unione Matematica Italiana

Motivati dall'analisi asintotica dei vortici nella teoria di Chern-Simons-Higgs, si studia l'equazione - Δ u = λ e u Ω e u d x - 1 Ω , u H 1 Ω dove Ω = R 2 / Z 2 é il toro piatto bidimensionale. In contrasto con l'analogo problema di Dirichlet, si dimostra che per λ 8 π , 4 π 2 l'equazione ammette una soluzione non banale. Tale soluzione cattura il carattere bidimensionale dell'equazione, nel senso che, per tali valori di λ , l'equazione non può ammettere soluzioni (periodiche) non banali dipendenti da una sola variabile (vedi [10]).

On periodic motions of a two dimensional Toda type chain

Gianni Mancini, P. N. Srikanth (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e. ϕ t t i - ϕ x x i = exp ( ϕ i + 1 - ϕ i ) - exp ( ϕ i - ϕ i - 1 ) 0 < x < π , t , i ( T C ) ϕ i ( 0 , t ) = ϕ i ( π , t ) = 0 t , i . We consider the case of “closed chains” i.e. ϕ i + N = ϕ i i and some N and look for solutions which are peirodic in time. The existence of periodic solutions for the dual problem is proved in Orlicz space setting.

On periodic motions of a two dimensional Toda type chain

Gianni Mancini, P. N. Srikanth (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e. ϕ t t i - ϕ x x i = exp ( ϕ i + 1 - ϕ i ) - exp ( ϕ i - ϕ i - 1 ) 0 < x < π , t I R , i Z Z ( TC ) ϕ i ( 0 , t ) = ϕ i ( π , t ) = 0 t , i . We consider the case of “closed chains" i.e. ϕ i + N = ϕ i i Z Z and some N I N and look for solutions which are peirodic in time. The existence of periodic solutions for the dual problem is proved in Orlicz space setting.

Currently displaying 61 – 80 of 132