Displaying 21 – 40 of 82

Showing per page

Harmonic maps from compact Kähler manifolds with positive scalar curvature to Kähler manifolds of strongly seminegative curvature

Qilin Yang (2009)

Colloquium Mathematicae

It is well known there is no non-constant harmonic map from a closed Riemannian manifold of positive Ricci curvature to a complete Riemannian manifold with non-positive sectional curvature. If one reduces the assumption on the Ricci curvature to one on the scalar curvature, such a vanishing theorem does not hold in general. This raises the question: What information can we obtain from the existence of a non-constant harmonic map? This paper gives an answer to this problem when both manifolds are...

Harmonic morphisms and circle actions on 3- and 4-manifolds

Paul Baird (1990)

Annales de l'institut Fourier

Harmonic morphisms are considered as a natural generalization of the analytic functions of Riemann surface theory. It is shown that any closed analytic 3-manifold supporting a non-constant harmonic morphism into a Riemann surface must be a Seifert fibre space. Harmonic morphisms ϕ : M N from a closed 4-manifold to a 3-manifold are studied. These determine a locally smooth circle action on M with possible fixed points. This restricts the topology of M . In all cases, a harmonic morphism ϕ : M N from a closed...

Harmonic morphisms and non-linear potential theory

Ilpo Laine (1992)

Banach Center Publications

Originally, harmonic morphisms were defined as continuous mappings φ:X → X' between harmonic spaces such that h'∘φ remains harmonic whenever h' is harmonic, see [1], p. 20. In general linear axiomatic potential theory, one has to replace harmonic functions h' by hyperharmonic functions u' in this definition, in order to obtain an interesting class of mappings, see [3], Remark 2.3. The modified definition appears to be equivalent with the original one, provided X' is a Bauer space, i.e., a harmonic...

Harmonic morphisms between Weyl spaces and twistorial maps II

Eric Loubeau, Radu Pantilie (2010)

Annales de l’institut Fourier

We define, on smooth manifolds, the notions of almost twistorial structure and twistorial map, thus providing a unified framework for all known examples of twistor spaces. The condition of being a harmonic morphism naturally appears among the geometric properties of submersive twistorial maps between low-dimensional Weyl spaces endowed with a nonintegrable almost twistorial structure due to Eells and Salamon. This leads to the twistorial characterisation of harmonic morphisms between Weyl spaces...

Harmonic morphisms onto Riemann surfaces and generalized analytic functions

Paul Baird (1987)

Annales de l'institut Fourier

We study harmonic morphisms from domains in R 3 and S 3 to a Riemann surface N , obtaining the classification of such in terms of holomorphic mappings from a covering space of N into certain Grassmannians. We show that the only non-constant submersive harmonic morphism defined on the whole of S 3 to a Riemann surface is essentially the Hopf map.Comparison is made with the theory of analytic functions. In particular we consider multiple-valued harmonic morphisms defined on domains in R 3 and show how a cutting...

Currently displaying 21 – 40 of 82