Displaying 481 – 500 of 1170

Showing per page

Higher-order phase transitions with line-tension effect

Bernardo Galvão-Sousa (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The behavior of energy minimizers at the boundary of the domain is of great importance in the Van de Waals-Cahn-Hilliard theory for fluid-fluid phase transitions, since it describes the effect of the container walls on the configuration of the liquid. This problem, also known as the liquid-drop problem, was studied by Modica in [Ann. Inst. Henri Poincaré, Anal. non linéaire 4 (1987) 487–512], and in a different form by Alberti et al. in [Arch. Rational Mech. Anal.u is a scalar density function and...

Higher-order phase transitions with line-tension effect

Bernardo Galvão-Sousa (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The behavior of energy minimizers at the boundary of the domain is of great importance in the Van de Waals-Cahn-Hilliard theory for fluid-fluid phase transitions, since it describes the effect of the container walls on the configuration of the liquid. This problem, also known as the liquid-drop problem, was studied by Modica in [Ann. Inst. Henri Poincaré, Anal. non linéaire4 (1987) 487–512], and in a different form by Alberti et al. in [Arch. Rational Mech. Anal.144 (1998) 1–46] for a first-order...

Homoclinic orbits for a class of singular second order Hamiltonian systems in ℝ3

Joanna Janczewska, Jakub Maksymiuk (2012)

Open Mathematics

We consider a conservative second order Hamiltonian system q ¨ + V ( q ) = 0 in ℝ3 with a potential V having a global maximum at the origin and a line l ∩ 0 = ϑ as a set of singular points. Under a certain compactness condition on V at infinity and a strong force condition at singular points we study, by the use of variational methods and geometrical arguments, the existence of homoclinic solutions of the system.

Homogeneous variational problems: a minicourse

David J. Saunders (2011)

Communications in Mathematics

A Finsler geometry may be understood as a homogeneous variational problem, where the Finsler function is the Lagrangian. The extremals in Finsler geometry are curves, but in more general variational problems we might consider extremal submanifolds of dimension m . In this minicourse we discuss these problems from a geometric point of view.

Currently displaying 481 – 500 of 1170