Displaying 21 – 40 of 121

Showing per page

On foundations of the Conley index theory

Roman Srzednicki (1999)

Banach Center Publications

The Conley index theory was introduced by Charles C. Conley (1933-1984) in [C1] and a major part of the foundations of the theory was developed in Ph. D. theses of his students, see for example [Ch, Ku, Mon]. The Conley index associates the homotopy type of some pointed space to an isolated invariant set of a flow, just as the fixed point index associates an integer number to an isolated set of fixed points of a continuous map. Examples of isolated invariant sets arise naturally in the critical...

On generalized f -harmonic morphisms

A. Mohammed Cherif, Djaa Mustapha (2014)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we study the characterization of generalized f -harmonic morphisms between Riemannian manifolds. We prove that a map between Riemannian manifolds is an f -harmonic morphism if and only if it is a horizontally weakly conformal map satisfying some further conditions. We present new properties generalizing Fuglede-Ishihara characterization for harmonic morphisms ([Fuglede B., Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978), 107–144], [Ishihara T., A...

On harmonic vector fields.

Jerzy J. Konderak (1992)

Publicacions Matemàtiques

A tangent bundle to a Riemannian manifold carries various metrics induced by a Riemannian tensor. We consider harmonic vector fields with respect to some of these metrics. We give a simple proof that a vector field on a compact manifold is harmonic with respect to the Sasaki metric on TM if and only if it is parallel. We also consider the metrics II and I + II on a tangent bundle (cf. [YI]) and harmonic vector fields generated by them.

On multivortex solutions in Chern-Simons gauge theory

Michael Struwe, Gabriella Tarantello (1998)

Bollettino dell'Unione Matematica Italiana

Motivati dall'analisi asintotica dei vortici nella teoria di Chern-Simons-Higgs, si studia l'equazione - Δ u = λ e u Ω e u d x - 1 Ω , u H 1 Ω dove Ω = R 2 / Z 2 é il toro piatto bidimensionale. In contrasto con l'analogo problema di Dirichlet, si dimostra che per λ 8 π , 4 π 2 l'equazione ammette una soluzione non banale. Tale soluzione cattura il carattere bidimensionale dell'equazione, nel senso che, per tali valori di λ , l'equazione non può ammettere soluzioni (periodiche) non banali dipendenti da una sola variabile (vedi [10]).

On periodic motions of a two dimensional Toda type chain

Gianni Mancini, P. N. Srikanth (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e. ϕ t t i - ϕ x x i = exp ( ϕ i + 1 - ϕ i ) - exp ( ϕ i - ϕ i - 1 ) 0 < x < π , t , i ( T C ) ϕ i ( 0 , t ) = ϕ i ( π , t ) = 0 t , i . We consider the case of “closed chains” i.e. ϕ i + N = ϕ i i and some N and look for solutions which are peirodic in time. The existence of periodic solutions for the dual problem is proved in Orlicz space setting.

On periodic motions of a two dimensional Toda type chain

Gianni Mancini, P. N. Srikanth (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e. ϕ t t i - ϕ x x i = exp ( ϕ i + 1 - ϕ i ) - exp ( ϕ i - ϕ i - 1 ) 0 < x < π , t I R , i Z Z ( TC ) ϕ i ( 0 , t ) = ϕ i ( π , t ) = 0 t , i . We consider the case of “closed chains" i.e. ϕ i + N = ϕ i i Z Z and some N I N and look for solutions which are peirodic in time. The existence of periodic solutions for the dual problem is proved in Orlicz space setting.

On periodic solutions of non-autonomous second order Hamiltonian systems

Xingyong Zhang, Yinggao Zhou (2010)

Applications of Mathematics

The purpose of this paper is to study the existence of periodic solutions for the non-autonomous second order Hamiltonian system u ¨ ( t ) = F ( t , u ( t ) ) , a.e. t [ 0 , T ] , u ( 0 ) - u ( T ) = u ˙ ( 0 ) - u ˙ ( T ) = 0 . Some new existence theorems are obtained by the least action principle.

Currently displaying 21 – 40 of 121