Displaying 61 – 80 of 157

Showing per page

Heat kernel and semigroup estimates for sublaplacians with drift on Lie groups.

Nick Dungey (2005)

Publicacions Matemàtiques

Let G be a Lie group. The main new result of this paper is an estimate in L2 (G) for the Davies perturbation of the semigroup generated by a centered sublaplacian H on G. When G is amenable, such estimates hold only for sublaplacians which are centered. Our semigroup estimate enables us to give new proofs of Gaussian heat kernel estimates established by Varopoulos on amenable Lie groups and by Alexopoulos on Lie groups of polynomial growth.

Heat kernel on manifolds with ends

Alexander Grigor’yan, Laurent Saloff-Coste (2009)

Annales de l’institut Fourier

We prove two-sided estimates of heat kernels on non-parabolic Riemannian manifolds with ends, assuming that the heat kernel on each end separately satisfies the Li-Yau estimate.

Heat kernel upper bounds on a complete non-compact manifold.

Alexander Grigor'yan (1994)

Revista Matemática Iberoamericana

Let M be a smooth connected non-compact geodesically complete Riemannian manifold, Δ denote the Laplace operator associated with the Riemannian metric, n ≥ 2 be the dimension of M. Consider the heat equation on the manifoldut - Δu = 0,where u = u(x,t), x ∈ M, t > 0. The heat kernel p(x,y,t) is by definition the smallest positive fundamental solution to the heat equation which exists on any manifold (see [Ch], [D]). The purpose of the present work is to obtain uniform upper bounds of p(x,y,t)...

High order regularity for subelliptic operators on Lie groups of polynomial growth.

Nick Dungey (2005)

Revista Matemática Iberoamericana

Let G be a Lie group of polynomial volume growth, with Lie algebra g. Consider a second-order, right-invariant, subelliptic differential operator H on G, and the associated semigroup St = e-tH. We identify an ideal n' of g such that H satisfies global regularity estimates for spatial derivatives of all orders, when the derivatives are taken in the direction of n'. The regularity is expressed as L2 estimates for derivatives of the semigroup, and as Gaussian bounds for derivatives of the heat kernel....

How to produce a Ricci flow via Cheeger–Gromoll exhaustion

Esther Cabezas-Rivas, Burkhard Wilking (2015)

Journal of the European Mathematical Society

We prove short time existence for the Ricci flow on open manifolds of non-negative complex sectional curvature without requiring upper curvature bounds. By considering the doubling of convex sets contained in a Cheeger–Gromoll convex exhaustion and solving the singular initial value problem for the Ricci flow on these closed manifolds, we obtain a sequence of closed solutions of the Ricci flow with non-negative complex sectional curvature which subconverge to a Ricci flow on the open manifold. Furthermore,...

How to unify the total/local-length-constraints of the gradient flow for the bending energy of plane curves

Yuki Miyamoto, Takeyuki Nagasawa, Fumito Suto (2009)

Kybernetika

The gradient flow of bending energy for plane curve is studied. The flow is considered under two kinds of constraints; one is under the area and total-length constraints; the other is under the area and local-length constraints. The fundamental results (the local existence and uniqueness) were obtained independently by Kurihara and the second author for the former one; by Okabe for the later one. For the former one the global existence was shown for any smooth initial curves, but the asymptotic...

Integrable system of the heat kernel associated with logarithmic potentials

Kazuhiko Aomoto (2000)

Annales Polonici Mathematici

The heat kernel of a Sturm-Liouville operator with logarithmic potential can be described by using the Wiener integral associated with a real hyperplane arrangement. The heat kernel satisfies an infinite-dimensional analog of the Gauss-Manin connection (integrable system), generalizing a variational formula of Schläfli for the volume of a simplex in the space of constant curvature.

Currently displaying 61 – 80 of 157