Displaying 21 – 40 of 45

Showing per page

Front d'onde et propagation des singularités pour un vecteur-distribution

Dominique Manchon (1999)

Colloquium Mathematicae

We define the wave front set of a distribution vector of a unitary representation in terms of pseudo-differential-like operators [M2] for any real Lie group G. This refines the notion of wave front set of a representation introduced by R. Howe [Hw]. We give as an application a necessary condition so that a distribution vector remains a distribution vector for the restriction of the representation to a closed subgroup H, and we give a propagation of singularities theorem for distribution vectors.

Front propagation for nonlinear diffusion equations on the hyperbolic space

Hiroshi Matano, Fabio Punzo, Alberto Tesei (2015)

Journal of the European Mathematical Society

We study the Cauchy problem in the hyperbolic space n ( n 2 ) for the semilinear heat equation with forcing term, which is either of KPP type or of Allen-Cahn type. Propagation and extinction of solutions, asymptotical speed of propagation and asymptotical symmetry of solutions are addressed. With respect to the corresponding problem in the Euclidean space n new phenomena arise, which depend on the properties of the diffusion process in n . We also investigate a family of travelling wave solutions, named...

Fronts d'onde à l'infini des fonctions analytiques réelles

Jean-Louis Lieutenant (1984)

Annales de l'institut Fourier

En adaptant les méthodes algébriques et géométriques qu’utilisent M. Sato, T. Kawai et M. Kashiwara pour obtenir le faisceau des microfonctions, nous construisons de manière fonctorielle, donc intrinsèque, un faisceau 𝒞 t sur la sphère cotangente à un espace vectoriel réel de dimension finie E . Les sections de ce faisceau jouent vis-à-vis des fonctions analytiques sur E un rôle analogue à celui des microfonctions vis-à-vis des hyperfonctions. Nous en déduisons une notions de front d’onde à l’infini...

Currently displaying 21 – 40 of 45