Previous Page 4

Displaying 61 – 77 of 77

Showing per page

Propagation of singularities for the wave equation on manifolds with corners

András Vasy (2004/2005)

Séminaire Équations aux dérivées partielles

In this talk we describe the propagation of 𝒞 and Sobolev singularities for the wave equation on 𝒞 manifolds with corners M equipped with a Riemannian metric g . That is, for X = M × t , P = D t 2 - Δ M , and u H loc 1 ( X ) solving P u = 0 with homogeneous Dirichlet or Neumann boundary conditions, we show that WF b ( u ) is a union of maximally extended generalized broken bicharacteristics. This result is a 𝒞 counterpart of Lebeau’s results for the propagation of analytic singularities on real analytic manifolds with appropriately stratified boundary,...

Propagation of singularities in many-body scattering in the presence of bound states

András Vasy (1999)

Journées équations aux dérivées partielles

In these lecture notes we describe the propagation of singularities of tempered distributional solutions u 𝒮 ' of ( H - λ ) u = 0 , where H is a many-body hamiltonian H = Δ + V , Δ 0 , V = a V a , and λ is not a threshold of H , under the assumption that the inter-particle (e.g. two-body) interactions V a are real-valued polyhomogeneous symbols of order - 1 (e.g. Coulomb-type with the singularity at the origin removed). Here the term “singularity” provides a microlocal description of the lack of decay at infinity. Our result is then that the...

Propagation through trapped sets and semiclassical resolvent estimates

Kiril Datchev, András Vasy (2012)

Annales de l’institut Fourier

Motivated by the study of resolvent estimates in the presence of trapping, we prove a semiclassical propagation theorem in a neighborhood of a compact invariant subset of the bicharacteristic flow which is isolated in a suitable sense. Examples include a global trapped set and a single isolated periodic trajectory. This is applied to obtain microlocal resolvent estimates with no loss compared to the nontrapping setting.

Properties of a hypothetical exotic complex structure on P 3

J. R. Brown (2007)

Mathematica Bohemica

We consider almost-complex structures on P 3 whose total Chern classes differ from that of the standard (integrable) almost-complex structure. E. Thomas established the existence of many such structures. We show that if there exists an “exotic” integrable almost-complex structures, then the resulting complex manifold would have specific Hodge numbers which do not vanish. We also give a necessary condition for the nondegeneration of the Frölicher spectral sequence at the second level.

Pseudo-laplaciens. I

Yves Colin de Verdière (1982)

Annales de l'institut Fourier

On construit, sur une variété riemannienne X de dimension 2 ou 3 , les extensions autoadjointes Δ α , x 0 ( α R / π Z ) de la restriction du laplacien aux fonctions nulles au voisinage d’un point x 0 de X . On calcule explicitement les valeurs propres de Δ α , x 0 .

Pseudo-laplaciens II

Yves Colin de Verdière (1983)

Annales de l'institut Fourier

Dans cet article, nous étudions une famille d’opérateurs auto-adjoints Δ a dérivés du laplacien sur une surface de Riemann d’aire finie et ayant au voisinage de l’infini la structure d’un cylindre [ b , + [ × R / Z muni d’une métrique à courbure constante - 1 . Après avoir étudié la théorie spectrale de tels opérateurs, nous donnons, comme application, un théorème prévoyant l’absence générique de valeurs propres immergées dans le spectre continu du laplacien de ces surfaces. Nous montrons enfin comment ceci permet de...

Currently displaying 61 – 77 of 77

Previous Page 4