Previous Page 9

Displaying 161 – 172 of 172

Showing per page

Transversal biwave maps

Yuan-Jen Chiang, Robert A. Wolak (2010)

Archivum Mathematicum

In this paper, we prove that the composition of a transversal biwave map and a transversally totally geodesic map is a transversal biwave map. We show that there are biwave maps which are not transversal biwave maps, and there are transversal biwave maps which are not biwave maps either. We prove that if f is a transversal biwave map satisfying certain condition, then f is a transversal wave map. We finally study the transversal conservation laws of transversal biwave maps.

Triplets spectraux pour les variétés à singularité conique isolée

Jean-Marie Lescure (2001)

Bulletin de la Société Mathématique de France

Sur une pseudo-variété de dimension paire à une singularité conique isolée, des triplets spectraux sont construits à partir d’une classe d’opérateurs différentiels elliptiques de type Fuchs, contenant les opérateurs de Dirac à coefficients dans des fibrés plats dans la direction radiale. Ces derniers engendrent, sous une hypothèse raisonnable, le groupe de K -homologie pair tensorisé par de la pseudo-variété et leur caractère de Chern est calculé.

Trivial noncommutative principal torus bundles

Stefan Wagner (2011)

Banach Center Publications

A (smooth) dynamical system with transformation group ⁿ is a triple (A,ⁿ,α), consisting of a unital locally convex algebra A, the n-torus ⁿ and a group homomorphism α: ⁿ → Aut(A), which induces a (smooth) continuous action of ⁿ on A. In this paper we present a new, geometrically oriented approach to the noncommutative geometry of trivial principal ⁿ-bundles based on such dynamical systems, i.e., we call a dynamical system (A,ⁿ,α) a trivial noncommutative principal ⁿ-bundle if each isotypic component...

Twistor forms on Kähler manifolds

Andrei Moroianu, Uwe Semmelmann (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Twistor forms are a natural generalization of conformal vector fields on riemannian manifolds. They are defined as sections in the kernel of a conformally invariant first order differential operator. We study twistor forms on compact Kähler manifolds and give a complete description up to special forms in the middle dimension. In particular, we show that they are closely related to hamiltonian 2-forms. This provides the first examples of compact Kähler manifolds with non–parallel twistor forms in...

Two examples of fattening for the curvature flow with a driving force

Giovanni Bellettini, Maurizio Paolini (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We provide two examples of a regular curve evolving by curvature with a forcing term, which degenerates in a set having an interior part after a finite time.

Two new estimates for eigenvalues of Dirac operators

Wenmin Gong, Guangcun Lu (2016)

Annales Polonici Mathematici

We establish lower and upper eigenvalue estimates for Dirac operators in different settings, a new Kirchberg type estimate for the first eigenvalue of the Dirac operator on a compact Kähler spin manifold in terms of the energy momentum tensor, and an upper bound for the smallest eigenvalues of the twisted Dirac operator on Legendrian submanifolds of Sasakian manifolds. The sharpness of those estimates is also discussed.

Two remarks on Riemann surfaces.

José M. Rodriguez (1994)

Publicacions Matemàtiques

We study the relationship between linear isoperimetric inequalities and the existence of non-constant positive harmonic functions on Riemann surfaces.We also study the relationship between growth conditions of length of spheres and the existence and the existence of Green's function on Riemann surfaces.

Currently displaying 161 – 172 of 172

Previous Page 9