Displaying 81 – 100 of 260

Showing per page

Splitting the conservation process into creation and annihilation parts

Nicolas Privault (1998)

Banach Center Publications

The aim of this paper is the study of a non-commutative decomposition of the conservation process in quantum stochastic calculus. The probabilistic interpretation of this decomposition uses time changes, in contrast to the spatial shifts used in the interpretation of the creation and annihilation operators on Fock space.

Stability of solutions of BSDEs with random terminal time

Sandrine Toldo (2006)

ESAIM: Probability and Statistics

In this paper, we study the stability of the solutions of Backward Stochastic Differential Equations (BSDE for short) with an almost surely finite random terminal time. More precisely, we are going to show that if (Wn) is a sequence of scaled random walks or a sequence of martingales that converges to a Brownian motion W and if ( τ n ) is a sequence of stopping times that converges to a stopping time τ, then the solution of the BSDE driven by Wn with random terminal time τ n converges to the solution...

Stability of stochastic processes defined by integral functionals

K. Urbanik (1992)

Studia Mathematica

The paper is devoted to the study of integral functionals ʃ 0 f ( X ( t , ω ) ) d t for continuous nonincreasing functions f and nonnegative stochastic processes X(t,ω) with stationary and independent increments. In particular, a concept of stability defined in terms of the functionals ʃ 0 f ( a X ( t , ω ) ) d t with a ∈ (0,∞) is discussed.

Stabilization of nonlinear stochastic systems without unforced dynamics via time-varying feedback

Patrick Florchinger (2018)

Kybernetika

In this paper we give sufficient conditions under which a nonlinear stochastic differential system without unforced dynamics is globally asymptotically stabilizable in probability via time-varying smooth feedback laws. The technique developed to design explicitly the time-varying stabilizers is based on the stochastic Lyapunov technique combined with the strategy used to construct bounded smooth stabilizing feedback laws for passive nonlinear stochastic differential systems. The interest of this...

Stabilization of nonlinear stochastic systems without unforced dynamics via time-varying feedback

Patrick Florchinger (2016)

Kybernetika

In this paper we give sufficient conditions under which a nonlinear stochastic differential system without unforced dynamics is globally asymptotically stabilizable in probability via time-varying smooth feedback laws. The technique developed to design explicitly the time-varying stabilizers is based on the stochastic Lyapunov technique combined with the strategy used to construct bounded smooth stabilizing feedback laws for passive nonlinear stochastic differential systems. The interest of this...

Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers

Patrick Florchinger (2022)

Kybernetika

The present paper addresses the problem of the stabilization (in the sense of exponential stability in mean square) of partially linear composite stochastic systems by means of a stochastic observer. We propose sufficient conditions for the existence of a linear feedback law depending on an estimation given by a stochastic Luenberger observer which stabilizes the system at its equilibrium state. The novelty in our approach is that all the state variables but the output can be corrupted by noises...

Currently displaying 81 – 100 of 260