Page 1 Next

Displaying 1 – 20 of 26

Showing per page

Ergodicity for a stochastic geodesic equation in the tangent bundle of the 2D sphere

Ľubomír Baňas, Zdzisław Brzeźniak, Mikhail Neklyudov, Martin Ondreját, Andreas Prohl (2015)

Czechoslovak Mathematical Journal

We study ergodic properties of stochastic geometric wave equations on a particular model with the target being the 2D sphere while considering only solutions which are independent of the space variable. This simplification leads to a degenerate stochastic equation in the tangent bundle of the 2D sphere. Studying this equation, we prove existence and non-uniqueness of invariant probability measures for the original problem and obtain also results on attractivity towards an invariant measure. We also...

Estimation for misspecified ergodic diffusion processes from discrete observations

Masayuki Uchida, Nakahiro Yoshida (2011)

ESAIM: Probability and Statistics

The joint estimation of both drift and diffusion coefficient parameters is treated under the situation where the data are discretely observed from an ergodic diffusion process and where the statistical model may or may not include the true diffusion process. We consider the minimum contrast estimator, which is equivalent to the maximum likelihood type estimator, obtained from the contrast function based on a locally Gaussian approximation of the transition density. The asymptotic normality of the...

Estimation for misspecified ergodic diffusion processes from discrete observations

Masayuki Uchida, Nakahiro Yoshida (2012)

ESAIM: Probability and Statistics

The joint estimation of both drift and diffusion coefficient parameters is treated under the situation where the data are discretely observed from an ergodic diffusion process and where the statistical model may or may not include the true diffusion process. We consider the minimum contrast estimator, which is equivalent to the maximum likelihood type estimator, obtained from the contrast function based on a locally Gaussian approximation of the transition density. The asymptotic normality of...

Euler schemes and half-space approximation for the simulation of diffusion in a domain

Emmanuel Gobet (2001)

ESAIM: Probability and Statistics

This paper is concerned with the problem of simulation of ( X t ) 0 t T , the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain D : namely, we consider the case where the boundary D is killing, or where it is instantaneously reflecting in an oblique direction. Given N discretization times equally spaced on the interval [ 0 , T ] , we propose new discretization schemes: they are fully implementable and provide a weak error of order N - 1 under some conditions. The construction...

Euler schemes and half-space approximation for the simulation of diffusion in a domain

Emmanuel Gobet (2010)

ESAIM: Probability and Statistics

This paper is concerned with the problem of simulation of (Xt)0≤t≤T, the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain D: namely, we consider the case where the boundary ∂D is killing, or where it is instantaneously reflecting in an oblique direction. Given N discretization times equally spaced on the interval [0,T], we propose new discretization schemes: they are fully implementable and provide a weak error of order N-1 under some conditions....

Excursions of diffusion processes and continued fractions

Alain Comtet, Yves Tourigny (2011)

Annales de l'I.H.P. Probabilités et statistiques

It is well-known that the excursions of a one-dimensional diffusion process can be studied by considering a certain Riccati equation associated with the process. We show that, in many cases of interest, the Riccati equation can be solved in terms of an infinite continued fraction. We examine the probabilistic significance of the expansion. To illustrate our results, we discuss some examples of diffusions in deterministic and in random environments.

Excursions of the integral of the brownian motion

Emmanuel Jacob (2010)

Annales de l'I.H.P. Probabilités et statistiques

The integrated brownian motion is sometimes known as the Langevin process. Lachal studied several excursion laws induced by the latter. Here we follow a different point of view developed by Pitman for general stationary processes. We first construct a stationary Langevin process and then determine explicitly its stationary excursion measure. This is then used to provide new descriptions of Itô’s excursion measure of the Langevin process reflected at a completely inelastic boundary, which has been...

Existence and asymptotic behaviour of some time-inhomogeneous diffusions

Mihai Gradinaru, Yoann Offret (2013)

Annales de l'I.H.P. Probabilités et statistiques

Let us consider a solution of a one-dimensional stochastic differential equation driven by a standard Brownian motion with time-inhomogeneous drift coefficient ρ sgn ( x ) | x | α / t β . This process can be viewed as a Brownian motion evolving in a potential, possibly singular, depending on time. We prove results on the existence and uniqueness of solution, study its asymptotic behaviour and made a precise description, in terms of parameters ρ , α and β , of the recurrence, transience and convergence. More precisely, asymptotic...

Currently displaying 1 – 20 of 26

Page 1 Next