Previous Page 3

Displaying 41 – 52 of 52

Showing per page

Approximation of bivariate Markov chains by one-dimensional diffusion processes

Daniela Kuklíková (1978)

Aplikace matematiky

The paper deals with several questions of the diffusion approximation. The goal of this paper is to create the general method of reducting the dimension of the model with the aid of the diffusion approximation. Especially, two dimensional random variables are approximated by one-dimensional diffusion process by replacing one of its coordinates by a certain characteristic, e.g. by its stationary expectation. The suggested method is used for several different systems. For instance, the method is applicable...

Asymptotic behavior of the invariant measure for a diffusion related to an NA group

Ewa Damek, Andrzej Hulanicki (2006)

Colloquium Mathematicae

On a Lie group NA that is a split extension of a nilpotent Lie group N by a one-parameter group of automorphisms A, the heat semigroup μ t generated by a second order subelliptic left-invariant operator j = 0 m Y j + Y is considered. Under natural conditions there is a μ ̌ t -invariant measure m on N, i.e. μ ̌ t * m = m . Precise asymptotics of m at infinity is given for a large class of operators with Y₀,...,Yₘ generating the Lie algebra of S.

Asymptotic stability in L¹ of a transport equation

M. Ślęczka (2004)

Annales Polonici Mathematici

We study the asymptotic behaviour of solutions of a transport equation. We give some sufficient conditions for the complete mixing property of the Markov semigroup generated by this equation.

Asymptotics for conservation laws involving Lévy diffusion generators

Piotr Biler, Grzegorz Karch, Wojbor A. Woyczyński (2001)

Studia Mathematica

Let -ℒ be the generator of a Lévy semigroup on L¹(ℝⁿ) and f: ℝ → ℝⁿ be a nonlinearity. We study the large time asymptotic behavior of solutions of the nonlocal and nonlinear equations uₜ + ℒu + ∇·f(u) = 0, analyzing their L p -decay and two terms of their asymptotics. These equations appear as models of physical phenomena that involve anomalous diffusions such as Lévy flights.

Asymptotics for the L p -deviation of the variance estimator under diffusion

Paul Doukhan, José R. León (2004)

ESAIM: Probability and Statistics

We consider a diffusion process X t smoothed with (small) sampling parameter ε . As in Berzin, León and Ortega (2001), we consider a kernel estimate α ^ ε with window h ( ε ) of a function α of its variance. In order to exhibit global tests of hypothesis, we derive here central limit theorems for the L p deviations such as 1 h h ε p 2 α ^ ε - α p p - 𝔼 α ^ ε - α p p .

Asymptotics for the Lp-deviation of the variance estimator under diffusion

Paul Doukhan, José R. León (2010)

ESAIM: Probability and Statistics

We consider a diffusion process Xt smoothed with (small) sampling parameter ε. As in Berzin, León and Ortega (2001), we consider a kernel estimate α ^ ε with window h(ε) of a function α of its variance. In order to exhibit global tests of hypothesis, we derive here central limit theorems for the Lp deviations such as 1 h h ε p 2 α ^ ε - α p p - I E α ^ ε - α p p .

Currently displaying 41 – 52 of 52

Previous Page 3