Displaying 61 – 80 of 309

Showing per page

Smoothing and occupation measures of stochastic processes

Mario Wschebor (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

This is a review paper about some problems of statistical inference for one-parameter stochastic processes, mainly based upon the observation of a convolution of the path with a non-random kernel. Most of the results are known and presented without proofs. The tools are first and second order approximation theorems of the occupation measure of the path, by means of functionals defined on the smoothed paths. Various classes of stochastic processes are considered starting with the Wiener process,...

Smoothness for the collision local time of two multidimensional bifractional Brownian motions

Guangjun Shen, Litan Yan, Chao Chen (2012)

Czechoslovak Mathematical Journal

Let B H i , K i = { B t H i , K i , t 0 } , i = 1 , 2 be two independent, d -dimensional bifractional Brownian motions with respective indices H i ( 0 , 1 ) and K i ( 0 , 1 ] . Assume d 2 . One of the main motivations of this paper is to investigate smoothness of the collision local time T = 0 T δ ( B s H 1 , K 1 - B s H 2 , K 2 ) d s , T > 0 , where δ denotes the Dirac delta function. By an elementary method we show that T is smooth in the sense of Meyer-Watanabe if and only if min { H 1 K 1 , H 2 K 2 } < 1 / ( d + 2 ) .

Smoothness of Metropolis-Hastings algorithm and application to entropy estimation

Didier Chauveau, Pierre Vandekerkhove (2013)

ESAIM: Probability and Statistics

The transition kernel of the well-known Metropolis-Hastings (MH) algorithm has a point mass at the chain’s current position, which prevent direct smoothness properties to be derived for the successive densities of marginals issued from this algorithm. We show here that under mild smoothness assumption on the MH algorithm “input” densities (the initial, proposal and target distributions), propagation of a Lipschitz condition for the iterative densities can be proved. This allows us to build a consistent...

Sobolev-Kantorovich Inequalities

Michel Ledoux (2015)

Analysis and Geometry in Metric Spaces

In a recent work, E. Cinti and F. Otto established some new interpolation inequalities in the study of pattern formation, bounding the Lr(μ)-norm of a probability density with respect to the reference measure μ by its Sobolev norm and the Kantorovich-Wasserstein distance to μ. This article emphasizes this family of interpolation inequalities, called Sobolev-Kantorovich inequalities, which may be established in the rather large setting of non-negatively curved (weighted) Riemannian manifolds by means...

Sobre una solución recursiva para una cadena de Markov n-dimensional en tiempo continuo.

Francisco Requena (1989)

Trabajos de Estadística

Se considera una solución recursiva para una cadena de Markov n-dimensional en tiempo continuo, basada en una función entera K y en la que aparece una familia de polinomios. Se hace un estudio de esta familia, a partir del análisis de una clase de subconjuntos de Im(K), con el objetivo de encontrar la subfamilia de polinomios que aparece explícitamente en la solución recursiva, en términos de la distribución de probabilidad absoluta de la cadena, y la subfamilia que es necesario y suficiente calcular...

Soft local times and decoupling of random interlacements

Serguei Popov, Augusto Teixeira (2015)

Journal of the European Mathematical Society

In this paper we establish a decoupling feature of the random interlacement process u d at level u , d 3 . Roughly speaking, we show that observations of u restricted to two disjoint subsets A 1 and A 2 of d are approximately independent, once we add a sprinkling to the process u by slightly increasing the parameter u . Our results differ from previous ones in that we allow the mutual distance between the sets A 1 and A 2 to be much smaller than their diameters. We then provide an important application of this...

Sojourn time in ℤ+ for the Bernoulli random walk on ℤ

Aimé Lachal (2012)

ESAIM: Probability and Statistics

Let (Sk)k≥1 be the classical Bernoulli random walk on the integer line with jump parameters p ∈ (0,1) and q = 1 − p. The probability distribution of the sojourn time of the walk in the set of non-negative integers up to a fixed time is well-known, but its expression is not simple. By modifying slightly this sojourn time through a particular counting process of the zeros of the walk as done by Chung & Feller [Proc. Nat. Acad. Sci. USA 35 (1949) 605–608], simpler representations may be obtained...

Sojourn time in ℤ+ for the Bernoulli random walk on ℤ

Aimé Lachal (2012)

ESAIM: Probability and Statistics

Let (Sk)k≥1 be the classical Bernoulli random walk on the integer line with jump parameters p ∈ (0,1) and q = 1 − p. The probability distribution of the sojourn time of the walk in the set of non-negative integers up to a fixed time is well-known, but its expression is not simple. By modifying slightly this sojourn time through a particular counting process of the zeros of the walk as done by Chung & Feller [Proc. Nat. Acad. Sci....

Sojourn times.

Takács, Lajos (1996)

Journal of Applied Mathematics and Stochastic Analysis

Currently displaying 61 – 80 of 309