Displaying 141 – 160 of 166

Showing per page

Convergence of simple random walks on random discrete trees to brownian motion on the continuum random tree

David Croydon (2008)

Annales de l'I.H.P. Probabilités et statistiques

In this article it is shown that the brownian motion on the continuum random tree is the scaling limit of the simple random walks on any family of discrete n-vertex ordered graph trees whose search-depth functions converge to the brownian excursion as n→∞. We prove both a quenched version (for typical realisations of the trees) and an annealed version (averaged over all realisations of the trees) of our main result. The assumptions of the article cover the important example of simple random walks...

Convex entropy decay via the Bochner–Bakry–Emery approach

Pietro Caputo, Paolo Dai Pra, Gustavo Posta (2009)

Annales de l'I.H.P. Probabilités et statistiques

We develop a method, based on a Bochner-type identity, to obtain estimates on the exponential rate of decay of the relative entropy from equilibrium of Markov processes in discrete settings. When this method applies the relative entropy decays in a convex way. The method is shown to be rather powerful when applied to a class of birth and death processes. We then consider other examples, including inhomogeneous zero-range processes and Bernoulli–Laplace models. For these two models, known results...

Coupling a branching process to an infinite dimensional epidemic process***

Andrew D. Barbour (2010)

ESAIM: Probability and Statistics

Branching process approximation to the initial stages of an epidemic process has been used since the 1950's as a technique for providing stochastic counterparts to deterministic epidemic threshold theorems. One way of describing the approximation is to construct both branching and epidemic processes on the same probability space, in such a way that their paths coincide for as long as possible. In this paper, it is shown, in the context of a Markovian model of parasitic infection, that coincidence...

Covariance structure of wide-sense Markov processes of order k ≥ 1

Arkadiusz Kasprzyk, Władysław Szczotka (2006)

Applicationes Mathematicae

A notion of a wide-sense Markov process X t of order k ≥ 1, X t W M ( k ) , is introduced as a direct generalization of Doob’s notion of wide-sense Markov process (of order k=1 in our terminology). A base for investigation of the covariance structure of X t is the k-dimensional process x t = ( X t - k + 1 , . . . , X t ) . The covariance structure of X t W M ( k ) is considered in the general case and in the periodic case. In the general case it is shown that X t W M ( k ) iff x t is a k-dimensional WM(1) process and iff the covariance function of x t has the triangular property....

Currently displaying 141 – 160 of 166