Displaying 121 – 140 of 166

Showing per page

Continuity of solutions of Riccati equations for the discrete-time JLQP

Adam Czornik, Andrzej Świerniak (2002)

International Journal of Applied Mathematics and Computer Science

The continuity of the solutions of difference and algebraic coupled Riccati equations for the discrete-time Markovian jump linear quadratic control problem as a function of coefficients is verified. The line of reasoning goes through the use of the minimum property formulated analogously to the one for coupled continuous Riccati equations presented by Wonham and a set of comparison theorems.

Continuous-time multitype branching processes conditioned on very late extinction

Sophie Pénisson (2011)

ESAIM: Probability and Statistics

Multitype branching processes and Feller diffusion processes are conditioned on very late extinction. The conditioned laws are expressed as Doob h-transforms of the unconditioned laws, and an interpretation of the conditioned paths for the branching process is given, via the immortal particle. We study different limits for the conditioned process (increasing delay of extinction, long-time behavior, scaling limit) and provide an exhaustive list of exchangeability results.

Continuous-time multitype branching processes conditioned on very late extinction***

Sophie Pénisson (2012)

ESAIM: Probability and Statistics

Multitype branching processes and Feller diffusion processes are conditioned on very late extinction. The conditioned laws are expressed as Doob h-transforms of the unconditioned laws, and an interpretation of the conditioned paths for the branching process is given, via the immortal particle. We study different limits for the conditioned process (increasing delay of extinction, long-time behavior, scaling limit) and provide an exhaustive list of exchangeability results.

Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains

Jean-Pierre Conze, Albert Raugi (2003)

ESAIM: Probability and Statistics

We present a spectral theory for a class of operators satisfying a weak “Doeblin–Fortet” condition and apply it to a class of transition operators. This gives the convergence of the series k 0 k r P k f , r , under some regularity assumptions and implies the central limit theorem with a rate in n - 1 2 for the corresponding Markov chain. An application to a non uniformly hyperbolic transformation on the interval is also given.

Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains

Jean-Pierre Conze, Albert Raugi (2010)

ESAIM: Probability and Statistics

We present a spectral theory for a class of operators satisfying a weak “Doeblin–Fortet" condition and apply it to a class of transition operators. This gives the convergence of the series ∑k≥0krPkƒ, r , under some regularity assumptions and implies the central limit theorem with a rate in n - 1 2 for the corresponding Markov chain. An application to a non uniformly hyperbolic transformation on the interval is also given.

Currently displaying 121 – 140 of 166