Construction of markovian coalescents
The continuity of the solutions of difference and algebraic coupled Riccati equations for the discrete-time Markovian jump linear quadratic control problem as a function of coefficients is verified. The line of reasoning goes through the use of the minimum property formulated analogously to the one for coupled continuous Riccati equations presented by Wonham and a set of comparison theorems.
We study γk(x2, …, xk; t), the k-fold renormalized self-intersection local time for brownian motion in R1. Our main result says that γk(x2, …, xk; t) is continuously differentiable in the spatial variables, with probability 1.
Multitype branching processes and Feller diffusion processes are conditioned on very late extinction. The conditioned laws are expressed as Doob h-transforms of the unconditioned laws, and an interpretation of the conditioned paths for the branching process is given, via the immortal particle. We study different limits for the conditioned process (increasing delay of extinction, long-time behavior, scaling limit) and provide an exhaustive list of exchangeability results.
Multitype branching processes and Feller diffusion processes are conditioned on very late extinction. The conditioned laws are expressed as Doob h-transforms of the unconditioned laws, and an interpretation of the conditioned paths for the branching process is given, via the immortal particle. We study different limits for the conditioned process (increasing delay of extinction, long-time behavior, scaling limit) and provide an exhaustive list of exchangeability results.
We present a spectral theory for a class of operators satisfying a weak “Doeblin–Fortet” condition and apply it to a class of transition operators. This gives the convergence of the series , , under some regularity assumptions and implies the central limit theorem with a rate in for the corresponding Markov chain. An application to a non uniformly hyperbolic transformation on the interval is also given.
We present a spectral theory for a class of operators satisfying a weak “Doeblin–Fortet" condition and apply it to a class of transition operators. This gives the convergence of the series ∑k≥0krPkƒ, , under some regularity assumptions and implies the central limit theorem with a rate in for the corresponding Markov chain. An application to a non uniformly hyperbolic transformation on the interval is also given.
We provide sufficient and necessary conditions for asymptotic periodicity of iterates of strong Feller stochastic operators.